【高校数学】 数Ⅱ-81 不等式の表す領域④ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-81 不等式の表す領域④

問題文全文(内容文):
◎次の不等式の表す領域を図示しよう。

①$(x-2y)(x-2) \lt 0$

②$(x-y)(x^2+y^2-1) \geqq 0$

③$(4x-y+1)(2x+y-4) \gt 0$
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式の表す領域を図示しよう。

①$(x-2y)(x-2) \lt 0$

②$(x-y)(x^2+y^2-1) \geqq 0$

③$(4x-y+1)(2x+y-4) \gt 0$
投稿日:2015.07.18

<関連動画>

大学入試問題#893「難易度クソ高め」 #信州大学(2015)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \int_{2}^{x} \displaystyle \frac{t^2}{(t^2-1)^2}dt$

出典:2015年信州大学後期
この動画を見る 

指数不等式

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$3^x・25^{\frac{1}{x}}\leqq 45$
この動画を見る 

06愛知県教員採用試験(数学:1番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$0\leqq \theta \leqq \dfrac{\pi}{6}$とする.
$\cos\theta+k\sin\theta=k-1$が解をもつとき,
$k$の値を求めよ.
この動画を見る 

東京農工大 3次関数の最大値

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(x)=2x^3-5x^2-4x+1,x \leqq a $における$f(n)$の最大値を求めよ.

東京農工大過去問
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第4問〜領域における最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ 
不等式$(x-6)^2+(y-4)^2 \leqq 4$の表す領域を点$\textrm{P}(x,y)$が動くものとする。
このとき、$x^2+y^2$の最大値は$\boxed{\ \ タ\ \ }+\boxed{\ \ チ\ \ }\sqrt{\boxed{\ \ ツ\ \ }}$、$\dfrac{y}{x}$の最小値は$\dfrac{\boxed{\ \ テ\ \ }-\sqrt{\boxed{\ \ ト\ \ }}}{\boxed{\ \ ナ\ \ }}$、$x+y$の最大値は$\boxed{\ \ ニ\ \ }+\boxed{\ \ ヌ\ \ }\sqrt{\boxed{\ \ ネ\ \ }}$となる。

2021早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP