問題文全文(内容文):
(1)
$a$実数
$e^x \geqq e^a+(x-1)e^a$を示せ
(2)
$\displaystyle \int_{0}^{1}e^{\sin\ \pi\ x}dx \geqq e^{\frac{2}{x}}$を示せ
出典:1991年京都大学 入試問題
(1)
$a$実数
$e^x \geqq e^a+(x-1)e^a$を示せ
(2)
$\displaystyle \int_{0}^{1}e^{\sin\ \pi\ x}dx \geqq e^{\frac{2}{x}}$を示せ
出典:1991年京都大学 入試問題
チャプター:
04:40~ 解答のみ掲載 約10秒間隔
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
(1)
$a$実数
$e^x \geqq e^a+(x-1)e^a$を示せ
(2)
$\displaystyle \int_{0}^{1}e^{\sin\ \pi\ x}dx \geqq e^{\frac{2}{x}}$を示せ
出典:1991年京都大学 入試問題
(1)
$a$実数
$e^x \geqq e^a+(x-1)e^a$を示せ
(2)
$\displaystyle \int_{0}^{1}e^{\sin\ \pi\ x}dx \geqq e^{\frac{2}{x}}$を示せ
出典:1991年京都大学 入試問題
投稿日:2022.03.24