大学入試問題#155 琉球大学(1987) 極限 - 質問解決D.B.(データベース)

大学入試問題#155 琉球大学(1987) 極限

問題文全文(内容文):
$f(x)=x^3+2x$のとき
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(\sin\ x)}{\sin\ f(x)}$を求めよ。

出典:1987年琉球大学 入試問題
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#琉球大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=x^3+2x$のとき
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(\sin\ x)}{\sin\ f(x)}$を求めよ。

出典:1987年琉球大学 入試問題
投稿日:2022.03.29

<関連動画>

大学入試問題#362「頻出問題ではないでしょうか?」 福島大学 改 2014 #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ a \to \infty } \displaystyle \int_{-a}^{a}\displaystyle \frac{dx}{(e^x+e^{-x})^2}$

出典:2014年福島大学 入試問題
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試理系第1問(2)〜定積分と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(2)$\log$を自然対数とするとき、次の等式が成り立つ。
$\lim_{h \to 0}\int_{\frac{\pi}{3}}^{\frac{\pi}{3}+h}\log(|\sin t|^{\frac{1}{h}})dt=$
$\frac{1}{\boxed{ウ}}\log\frac{\boxed{エ}}{\boxed{オ}}$

2022明治大学全統理系過去問
この動画を見る 

福田のおもしろ数学276〜一般項が求まらない数列の極限

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$a_1=a(\gt 0),a_{n+1}=\frac{1}{6}cosa_n+\frac{1}{2}a_n+\frac{π}{4}$のとき、$\displaystyle \lim_{ n \to \infty } a_n$を求めて下さい。
この動画を見る 

【数Ⅲ】極限:福島県立医大! 極限値lim[n→∞]l[n]_θ[n]を求めよ。

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
Oを原点とする座標平面上に2点A(2,0),B(0,1)がある。自然数nに対し、線分ABを1:nに内分する点を$P_n$とし,$∠AOP_n=θ_n$とする。ただし、$0<θ_n<\dfrac{\pi}{2}$である。線分$AP_n$の長さを$l_n$として、極限値$\displaystyle \lim_{n\to \infty}\dfrac{l_n}{\theta_n}$を求めよ。
この動画を見る 

ハルハルさん作成問題 #極限の存在範囲

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{\sqrt{ (1+\displaystyle \frac{a^2}{x})(1+\displaystyle \frac{a}{x})(1+\displaystyle \frac{b}{x}) }-1}{x^b}=\displaystyle \frac{b^2}{a}+1$
を満たす実数の組$(a,b)$を平面上に図示せよ
この動画を見る 
PAGE TOP