福田の数学〜慶應義塾大学2024年看護医療学部第5問〜散布図と相関係数と分散 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年看護医療学部第5問〜散布図と相関係数と分散

問題文全文(内容文):
$\Large\boxed{5}$ 下図(※動画参照)は、あるクラスの40人の生徒の数学と理科の試験得点の散布図である。
データ点の近くの数値はそのデータ点の生徒の出席番号である。
(1)数学と理科の合計得点が最も高い生徒の出席番号は$\boxed{\ \ ヒ\ \ }$である。また、数学と理科の得点差の絶対値が最も大きい生徒の出席番号は$\boxed{\ \ フ\ \ }$である。
(2)数学と理科それぞれの得点の平均値を$\bar{x}$, $\bar{y}$、標準偏差を$s_x$, $s_y$、数学と理科の得点の共分散を$s_{xy}$と表すと、これらの数値は以下であった。
$\bar{x}$=67.7, $\bar{y}$=70.9, $s_x$=14.9, $s_y$=11.5, $s_{xy}$=115.7
数学の得点と理科の得点の相関係数は$\boxed{\ \ ヘ\ \ }$である。なお、答えは小数第3位を四捨五入し、小数第2位まで求めなさい。
(3)各生徒の数学の得点を$x_1$, $x_2$, ..., $x_{40}$、理科の得点を$y_1$, $y_2$, ..., $y_{40}$で表す。
数学と理科の合計得点$x_1$+$y_1$, $x_2$+$y_2$, ..., $x_{40}$+$y_{40}$の平均値は$\bar{x}$, $\bar{y}$を用いると$\boxed{\ \ ホ\ \ }$と表せる。合計得点の分散は、
$\displaystyle\frac{1}{40}\sum_{i=1}^{40}\left(x_i+y_i-\boxed{\ ホ\ }\right)^2$
であるから、これを式変形すると、合計得点の分散は、$s_x$, $s_y$, $s_{xy}$を用いて$\boxed{\ \ マ\ \ }$と表せる。これらの式に(2)で与えられた数値を入れて計算すると、数学と理科の合計得点の平均値は$\boxed{\ \ ミ\ \ }$、分散は$\boxed{\ \ ム\ \ }$である。なお、答えは小数第2位を四捨五入し、小数第1位まで求めなさい。
単元: #データの分析#データの分析#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 下図(※動画参照)は、あるクラスの40人の生徒の数学と理科の試験得点の散布図である。
データ点の近くの数値はそのデータ点の生徒の出席番号である。
(1)数学と理科の合計得点が最も高い生徒の出席番号は$\boxed{\ \ ヒ\ \ }$である。また、数学と理科の得点差の絶対値が最も大きい生徒の出席番号は$\boxed{\ \ フ\ \ }$である。
(2)数学と理科それぞれの得点の平均値を$\bar{x}$, $\bar{y}$、標準偏差を$s_x$, $s_y$、数学と理科の得点の共分散を$s_{xy}$と表すと、これらの数値は以下であった。
$\bar{x}$=67.7, $\bar{y}$=70.9, $s_x$=14.9, $s_y$=11.5, $s_{xy}$=115.7
数学の得点と理科の得点の相関係数は$\boxed{\ \ ヘ\ \ }$である。なお、答えは小数第3位を四捨五入し、小数第2位まで求めなさい。
(3)各生徒の数学の得点を$x_1$, $x_2$, ..., $x_{40}$、理科の得点を$y_1$, $y_2$, ..., $y_{40}$で表す。
数学と理科の合計得点$x_1$+$y_1$, $x_2$+$y_2$, ..., $x_{40}$+$y_{40}$の平均値は$\bar{x}$, $\bar{y}$を用いると$\boxed{\ \ ホ\ \ }$と表せる。合計得点の分散は、
$\displaystyle\frac{1}{40}\sum_{i=1}^{40}\left(x_i+y_i-\boxed{\ ホ\ }\right)^2$
であるから、これを式変形すると、合計得点の分散は、$s_x$, $s_y$, $s_{xy}$を用いて$\boxed{\ \ マ\ \ }$と表せる。これらの式に(2)で与えられた数値を入れて計算すると、数学と理科の合計得点の平均値は$\boxed{\ \ ミ\ \ }$、分散は$\boxed{\ \ ム\ \ }$である。なお、答えは小数第2位を四捨五入し、小数第1位まで求めなさい。
投稿日:2024.04.07

<関連動画>

【数学I】データの分析を極限までまとめた動画【語呂合わせ】

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学I】データの分析まとめ動画です
この動画を見る 

【中学数学】数学用語チェック絵本vol.7  データの分析と活用

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
データの分析と活用の用語をチェック!
この動画を見る 

【これだけでOK!】箱ひげ図はこれだけで十分です!【数学】【中学2年、高校】

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
箱ひげ図の読み方、ポイント解説動画です
この動画を見る 

【箱ひげ図はこう解く!】箱ひげ図と重要な統計量をすべて解説!【高校数学 数学】

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
【高校数学】箱ひげ図と重要な統計量の解説動画です

次の資料は、とある学校の生徒11人のテストの点数の結果である。
以下の問に答えよ。
----------------------------------------
7,2,10,4,8,6,5,5,7,6,9
----------------------------------------

(1)最小値を求めよ
(2)最大値を求めよ
(3)第一四分位数を求めよ
(4)中央値を求めよ
(5)第三四分位数を求めよ
(6)四分位範囲を求めよ
(7)箱ひげ図を描きなさい
この動画を見る 

福田の数学〜慶應義塾大学看護医療学部2025第5問〜データの分析、平均と分散

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

(1)$20$人の生徒に、$5$点満点の小テストを行った。

次の度数分布表は全員のテストの得点である。

この小テストの得点の平均値は$\boxed{ハ}$、

分散は$\boxed{ヒ}$である。

また、生徒のうちの$1$名の得点が$\boxed{フ}$点から

$\boxed{ヘ}$点に変更された場合、

生徒全員の得点の平均値は$3$、分散は$2$となる。

(2)確率変数$X$と$Y$は独立であり、$X$の平均が$m_x$、

分散が$\upsilon_x$であるとする。

また、$a,b$は定数とする。このとき、$aX+bY$の

平均は$\boxed{ホ}$、分散は$\boxed{マ}$である。

(3)確率変数$X_1,X_2,\cdots,X_n,X_{n+1}$は互いに

独立であり、

$T_n=\dfrac{1}{n}(X_1+X_2+\cdots + X_n)$

の平均が$m$、分散が$\upsilon$であるとする。

$X_{n+1}$の平均が$m'$、分散が$\upsilon'$であるとき、

$T_{n+1}=\dfrac{1}{n+1}(X_1+X_2+\cdots +X_n+X_{n+1})$

の平均は$\boxed{ミ}$、分散は$\boxed{ム}$である。

図は動画内参照

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 
PAGE TOP