【高校数学】 数Ⅱ-111 加法定理の応用①・2倍角の公式編 - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-111 加法定理の応用①・2倍角の公式編

問題文全文(内容文):
$\sin \alpha=$①________

$\cos \alpha=$②______=______=________

$\tan \alpha=$③________

◎$\displaystyle \frac{π}{2} \lt \alpha \lt π$で、$\sin \alpha=\displaystyle \frac{7}{4}$のとき、次の値を求めよう。

④$\sin 2 \alpha$

⑤$\cos 2 \alpha$

⑥$\tan 2 \alpha$
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\sin \alpha=$①________

$\cos \alpha=$②______=______=________

$\tan \alpha=$③________

◎$\displaystyle \frac{π}{2} \lt \alpha \lt π$で、$\sin \alpha=\displaystyle \frac{7}{4}$のとき、次の値を求めよう。

④$\sin 2 \alpha$

⑤$\cos 2 \alpha$

⑥$\tan 2 \alpha$
投稿日:2015.08.27

<関連動画>

【高校数学】2018年度センター試験・数学ⅡB・過去問解説~大問1の1三角関数~【数学ⅡB】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 1ラジアンとは、㋐のことである。
  ㋐に当てはまるものを、次の⓪~③のうちから一つ選べ。

  ⓪半径が1、面積が1の扇形の中心角の大きさ
  ①半径がx、面積が1の扇形の中心角の大きさ
  ②半径が1、張の長さが1の扇形の中心角の大きさ
  ③半径がx、弧の長さが1の扇形の中心角の大きさ


(2) 144°を弧度で表すと$\displaystyle \frac{㋑}{㋒}$xラジアンである。
  また、$\displaystyle \frac{23}{12}$xラジアンを度で表すと[エオカ]である。


(3) $\displaystyle \frac{x}{2}$≦θ≦xの範囲で2sin(θ+$\displaystyle \frac{π}{5}$)-2cos(θ+$\displaystyle \frac{π}{30}$=1を満たすθの値を求めよう。
  x=θ+$\displaystyle \frac{π}{5}$とおくと、①は2sin x-2cos(x-$\displaystyle \frac{π}{㋖}$=1と表せる。
  加法定理を用いると、この式はsin x-$\sqrt{ ㋗ }$cos x=1となる。

  さらに、三角関数の合成を用いるとsin(x-$\displaystyle \frac{π}{㋘}$)=$\displaystyle \frac{1}{㋙}$と変形できる。
  x=θ+$\displaystyle \frac{π}{5}$、$\displaystyle \frac{π}{2}$≦θ≦πだから、θ=$\displaystyle \frac{㋚㋛}{㋜㋝}$πである。
この動画を見る 

注意ポイントあり!定数分離の良問です【数学 入試問題】【北海道大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数 $f(\theta)=\dfrac{1}{\sqrt 2}sin2 \theta-sin \theta+cos\theta$ ($0≦\theta≦\pi)$を考える。

(3)$a$を実数の定数とする。

$f(\theta)=a$となる$\theta$がちょうど2個であるような$a$のい範囲を求めよ。

北海道大過去問
この動画を見る 

約束記号  C 慶應義塾 2021

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#三角関数#加法定理とその応用#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,b,c,d,e,fは0より大きく1より小さい実数
$T(x,y)=\frac{x+y}{1-x \times y}$
$T(a,f) = T(b,e) = T(c,d) = 1$のとき
$(1+a)(1+b)(1+c)(1+d)(1+e)(1+f) =$

2021慶應義塾高等学校
この動画を見る 

福田のわかった数学〜高校2年生080〜三角関数(19)2直線のなす角(3)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(19) なす角(3)
2点A(0,2), B(0,8)がある。点P(a,0) $(a \gt 0)$について$\angle APB$が最大となるaは?
この動画を見る 

【数Ⅱ】三角関数:方程式6x²-xy-y²=0は交わる2直線を表す。このとき、2直線のなす角θ(0≦θ≦π/2)を求めよ。

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
方程式$6x^2-xy-y^2=0$は交わる2直線を表す。このとき、2直線のなす角$\theta(0\leqq\theta\leqq \dfrac{\pi}{2}$)を求めよ。
この動画を見る 
PAGE TOP