【高校数学】 数Ⅱ-111 加法定理の応用①・2倍角の公式編 - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-111 加法定理の応用①・2倍角の公式編

問題文全文(内容文):
$\sin \alpha=$①________

$\cos \alpha=$②______=______=________

$\tan \alpha=$③________

◎$\displaystyle \frac{π}{2} \lt \alpha \lt π$で、$\sin \alpha=\displaystyle \frac{7}{4}$のとき、次の値を求めよう。

④$\sin 2 \alpha$

⑤$\cos 2 \alpha$

⑥$\tan 2 \alpha$
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\sin \alpha=$①________

$\cos \alpha=$②______=______=________

$\tan \alpha=$③________

◎$\displaystyle \frac{π}{2} \lt \alpha \lt π$で、$\sin \alpha=\displaystyle \frac{7}{4}$のとき、次の値を求めよう。

④$\sin 2 \alpha$

⑤$\cos 2 \alpha$

⑥$\tan 2 \alpha$
投稿日:2015.08.27

<関連動画>

京都大 三角比 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
京都大学過去問題
$0 \leqq α < β< γ< 2\pi$
$cosα+cosβ+cosγ=0$
$sinα+sinβ+sinγ=0$である
β-α、γ-βの値を求めよ。
この動画を見る 

【数Ⅱ】加法定理から出てくる公式【全部自力で導出しよう。暗記、ダメ絶対】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
(1$)\sin2x=cosx$$(0 \leqq x \lt 2\pi)$を解け.
(2)$t=tan\dfrac{\theta}{2}$とするとき,$\sin\theta,\cos\theta,\tan\theta$をtを用いて表せ.
この動画を見る 

福田のわかった数学〜高校2年生083〜三角関数(23)18°系の三角比(3)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$三角関数(22) 18°系の三角比(3)
(1)$\cos5\theta=f(\cos\theta)$を満たす多項式f(x)を求めよ。

(2)$\alpha=18°$のとき次の等式を示せ。
$\cos\alpha\cos3\alpha\cos7\alpha\cos9\alpha=\frac{5}{16}$
この動画を見る 

cosの和を求める

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos \dfrac{\pi}{7}-\cos \dfrac{2\pi}{7}+\cos \dfrac{3\pi}{7}$を求めよ
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第1問(2)〜三角関数への置き換えによる分数関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(2)$\theta$は|$\theta$|<$\displaystyle\frac{\pi}{2}$の範囲の定数とする。$x$=$\tan\theta$とおくと、$\displaystyle\frac{x}{x^2+1}$=$\frac{\boxed{ク}}{\boxed{ケ}}\sin2\theta$かつ$\displaystyle\frac{1}{x^2+1}$=$\frac{\boxed{コ}}{\boxed{サ}}(\cos2\theta$+1)であるので、$\displaystyle y=\frac{x^2+3x+5}{x^2+1}$とすると、
$\displaystyle y=\frac{\boxed{シ}}{\boxed{ス}}\sin(2\theta+\alpha)$+$\boxed{セ}$
と表せる。ただし、$\cos\alpha$=$\frac{\boxed{ソ}}{\boxed{タ}}$, $\sin\alpha$=$\frac{\boxed{チ}}{\boxed{ツ}}$である。また、|$x$|≦1に対応する$\theta$の範囲が|$\theta$|≦$\displaystyle\frac{\pi}{\boxed{テ}}$であることに注意すると、|$x$|≦1における$y$の取りうる値の最大値は$\frac{\boxed{トナ}}{\boxed{ニ}}$、最小値は$\frac{\boxed{ヌ}}{\boxed{ネ}}$ である。
この動画を見る 
PAGE TOP