福田の数学〜慶應義塾大学2024年看護医療学部第2問(2)〜2次方程式の解の存在範囲 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年看護医療学部第2問(2)〜2次方程式の解の存在範囲

問題文全文(内容文):
$\Large\boxed{2}$ (2)$m$を実数とする。$x$の2次方程式
$x^2$+$mx$+$m$+3=0
が異なる2つの虚数解をもつような$m$の値の範囲は$\boxed{\ \ シ\ \ }$であり、異なる2つの正の解をもつような$m$の値の範囲は$\boxed{\ \ ス\ \ }$である。
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (2)$m$を実数とする。$x$の2次方程式
$x^2$+$mx$+$m$+3=0
が異なる2つの虚数解をもつような$m$の値の範囲は$\boxed{\ \ シ\ \ }$であり、異なる2つの正の解をもつような$m$の値の範囲は$\boxed{\ \ ス\ \ }$である。
投稿日:2024.04.03

<関連動画>

福田のおもしろ数学113〜1分チャレンジ〜連立方程式を解こう

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の連立方程式を解け。ただし、$a$,$b$,$c$は0ではない異なる実数とする。
$\begin{array}{1}
a^3x+a^2y+az=1 ...①\\
b^3x+b^2y+bz=1 ...②\\
c^3x+c^2y+cz=1 ...③\\
\end{array}$
この動画を見る 

センター試験レベル 指数方程式の解 津田塾大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#津田塾大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x$の方程式
$9^x+2a・3^x+2a^2+a-6=0$が正と負の解を各1つもつ$a$の範囲を求めよ

出典:2000年津田塾大学 過去問
この動画を見る 

【高校数学】 数Ⅱ-42 剰余の定理と因数定理①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の整式を[  ]内の整式で割ったときの余りを求めよう。

①$③x^2-2x+1 [x-1]$

②$x^3+2x^2-5x-7 [x+1]$

③$4x^3-x^2-2x+1 [2x-1]$

④$2x^3-x^2+5 [2x+3]$
この動画を見る 

慶應義塾 解と係数の関係・対数方程式 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#解と判別式・解と係数の関係#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題

[1]$ x ^ 2 - x + 1 = 0$ の解をα、$x^2+x-1=0$の解をβとする。
(1)$α^n=1$となる最小のnを求めよ。
(2)αβは、$x^4+▢x^3+▢x^2+▢x+▢=0$の解である。
(3)上記の4次方程式の4つの解の平方の和 を求めよ。

[2]以下の連立方程式を解け、
\begin{eqnarray}
\left\{
\begin{array}{l}
log_2(x + y) + log_2(1 - x) = 0 \\
y = - x ^ 2 + 4x + 1
\end{array}
\right.
\end{eqnarray}

・Q 慶應大学医学部の初代医学部長は は何を発見したことで有名か?
この動画を見る 

4次方程式 要工夫

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^4-2\sqrt3 x^2=x-3+\sqrt3$
これを解け.
この動画を見る 
PAGE TOP