問題文全文(内容文):
①$a \gt 0$とする。
関数$f(x)=ax^3+3ax^2+b(-1 \leqq x \leqq 2)$の最大値が10、最小値が-8であるとき、定数a,bの値を求めよう。
①$a \gt 0$とする。
関数$f(x)=ax^3+3ax^2+b(-1 \leqq x \leqq 2)$の最大値が10、最小値が-8であるとき、定数a,bの値を求めよう。
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$a \gt 0$とする。
関数$f(x)=ax^3+3ax^2+b(-1 \leqq x \leqq 2)$の最大値が10、最小値が-8であるとき、定数a,bの値を求めよう。
①$a \gt 0$とする。
関数$f(x)=ax^3+3ax^2+b(-1 \leqq x \leqq 2)$の最大値が10、最小値が-8であるとき、定数a,bの値を求めよう。
投稿日:2015.10.18





