福田の数学〜立教大学2022年経済学部第1問(4)〜表が連続して出ない確率 - 質問解決D.B.(データベース)

福田の数学〜立教大学2022年経済学部第1問(4)〜表が連続して出ない確率

問題文全文(内容文):
コインを5回投げるとき、表が連続して2回以上出ない確率を求めよ。
ただし、コインを1回投げたとき、 表が出る確率および裏が出る確率はそれぞれ1/2であるとする。

2022立教大学経済学部過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
コインを5回投げるとき、表が連続して2回以上出ない確率を求めよ。
ただし、コインを1回投げたとき、 表が出る確率および裏が出る確率はそれぞれ1/2であるとする。

2022立教大学経済学部過去問
投稿日:2022.09.21

<関連動画>

福田の数学〜早稲田大学2025商学部第1問(4)〜正九角形の頂点を結んでできる正三角形の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#図形の性質#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(4)$P$を平面上の正九角形とする。

$P$の異なる$2$つの頂点を通る直線をすべて考える。

これら$36$本の直線のうちの$3$本により平面上で

囲まれてできる正三角形の総数は$\boxed{エ}$である。

ただし、互いに合同でも位置の異なるものは

異なる三角形として数える。

$2025$年早稲田大学商学部過去問題
この動画を見る 

【数A】【場合の数と確率】コインを投げたときの得点の期待値 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3枚の硬貨を同時に投げて、表が3枚出たら100点、2枚出たら50点を獲得し、1枚のときは60点を、1枚も出ていないときは70点を失うものとする。1回硬貨を投げるときの得点の期待値を求めよ。
この動画を見る 

福田の一夜漬け数学〜順列・組合せ(4)〜円順列(前編)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 8人が円形のテーブルに座るとき
(1)特定の2人が隣り合う並び方は何通りか。
(2)特定の2人が向かい合う並び方は何通りか。

${\Large\boxed{2}}$ 8人が次のようなテーブルに座る方法は何通りか。
(1)正方形のテーブル。各辺に2人ずつ座る。
(2)長方形のテーブル。長辺に3人、短辺に1人座る。

${\Large\boxed{3}}$ 立方体の6面に色を塗る。隣り合う面には違う色を塗る。
(1)6色で塗り分ける方法は何通りあるか。
(2)5色で塗り分ける方法は何通りあるか。
この動画を見る 

【高校数学】組合せの例題~すこし難しいのも解こうぜ~ 1-10.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
正十角形ABCDEFGHIJの3つの頂点を結んで三角形をつくる。
(ア)できる三角形の総数を求めよ。
(イ)正十角形と1辺だけを共有する三角形は何個あるか。
(ウ)正十角形と辺を共有しない三角形は何個あるか。


2⃣
男子8人,女子6人の中から4人の委員を選ぶとき、次のような選び方は何通りあるか。
(1)すべての選び方
(2)男子2人,女子2人を選ぶ
(3)女子から少なくとも1人選ぶ
(4)男子、女子から少なくとも1人ずつ選ぶ
(5)特定の2人、A・Bがともに選ばれる
(6)Aは選ばれ、Bは選ばれない
この動画を見る 

福田の数学〜一橋大学2025文系第5問〜確率漸化式と条件付き確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$5$点$A,B,C,D$が

下図のように線分で結ばれている。

点$P_1,P_2,P_3,\cdots $を次のように定めていく。

$P_1$を$A$とする。

正の整数$n$に対して、$P_n$を端点とする線分を

ひとつ無作為にえらび、その線分の$P_n$とは

異なる端点$P_{n+1}$とする。

(1)$P_n$が$A$または$B$である確率$p_n$を求めよ。

(2)$P_n$が$A$または$B$であるとき、

$k=1,2,\cdots ,n$のいずれに対しても$P_k=E$とは

ならない条件付き確率$q_n$を求めよ。

図は動画内参照

$2025$年一橋大学文系過去問題
この動画を見る 
PAGE TOP