大学入試問題#46 岡山大学(2013) 曲面で囲まれた領域の面積 - 質問解決D.B.(データベース)

大学入試問題#46 岡山大学(2013) 曲面で囲まれた領域の面積

問題文全文(内容文):
$x \gt 0$
曲線$y=|x-\displaystyle \frac{1}{x}|$と直線$y=2$で囲まれた領域の面積$S$を求めよ

出典:2013年岡山大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$
曲線$y=|x-\displaystyle \frac{1}{x}|$と直線$y=2$で囲まれた領域の面積$S$を求めよ

出典:2013年岡山大学 入試問題
投稿日:2021.11.21

<関連動画>

大学入試問題#359「読みの入った部分積分で解いてみた」 神戸大学(2014) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}}\displaystyle \frac{2x\ sin\ x}{\cos^2x}dx$

出典:2014年神戸大学 入試問題
この動画を見る 

大学入試問題#129 関西学院大学(1991) 二項定理の応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#関西学院大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$(a+b+\displaystyle \frac{1}{a}+\displaystyle \frac{1}{b})^7$を展開した時の$ab^2$の係数を求めよ。

出典:1991年関西学院大学 入試問題
この動画を見る 

数学「大学入試良問集」【14−15 折れ線の最小値と空間ベクトル】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
点$A(1,2,4)$を通り、ベクトル$\vec{ n }=(-3,1,2)$に垂直な平面を$\alpha$とする。
平面$\alpha$に関して同じ側に2点$P(-2,1,7),Q(1,3,7)$がある。
次の問いに答えよ。
(1)
平面$\alpha$に関して点$P$と対称な点$R$の座標を求めよ。

(2)
平面$\alpha$上の点で、$PS+QS$を最小にする点$S$の座標とそのときの最小値を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第1問(3)〜集合の要素の個数と2次方程式の解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#複素数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
(3)整数$k$に対して、$x$の2次方程式$x^2+kx+k+35=0$の解を$\alpha_k,\beta_k$とおく。
ただし、方程式が重解をもつときは$\alpha_k=\beta_k$である。また$U=\left\{k|kは整数、かつ|k| \leqq 100 \right\}$を全体集合とし、その部分集合$A=\{k|k \in U$かつ$\alpha_k,\beta_k$はともに実数で$\alpha_k\neq \beta_k\}$
$B=\{k|k \in U$かつ$\alpha_k,\beta_k$の実数はともに2より大きい$\}$
$C=\{k|k \in U$かつ$\alpha_k,\beta_k$の実部と虚部はすべて整数$\}$
を考える。このとき$n(A)=\boxed{\ \ (か)\ \ },$$n(A \cap B)=\boxed{\ \ (き)\ \ },$$n(\bar{ A } \cap B)=\boxed{\ \ (く)\ \ },$
$n(A \cap C)=\boxed{\ \ (け)\ \ },$$n(\bar{ A } \cap C)=\boxed{\ \ (こ)\ \ }$である。ただし有限集合$X$に対してその要素の個数を$n(X)$で表す。また$\bar{ A }$は$A$の補集合である。

2021慶應義塾大学医学部過去問
この動画を見る 

大学入試問題#911「私学医学部では出題必須か!?」 #自治医科大学2024

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: ますただ
問題文全文(内容文):
実数$x,y$が$x^2+y^2=1$を満たすとき、$5x^2+4xy+y^2$の最大値を$M,$最小値を$m$とする。
$\displaystyle \frac{(M-m)^2}{4}$の値を求めよ。

出典:2024年自治医科大学
この動画を見る 
PAGE TOP