練習問題51 広島大学 改 不定積分 - 質問解決D.B.(データベース)

練習問題51 広島大学 改 不定積分

問題文全文(内容文):
$\displaystyle \int\ 2(x-1)e^{-x}\cos\ x\ dx$
$\displaystyle \int\ e^{-x}\cos\ x\ dx=\displaystyle \frac{e^{-x}}{2}(\sin\ x-\cos\ x)+c$
$\displaystyle \int\ e^{-x}\sin\ x\ dx=-\displaystyle \frac{e^{-x}}{2}(\sin\ x+\cos\ x)+c$

$c$は積分定数

出典:広島大学
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 102

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 103
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int\ 2(x-1)e^{-x}\cos\ x\ dx$
$\displaystyle \int\ e^{-x}\cos\ x\ dx=\displaystyle \frac{e^{-x}}{2}(\sin\ x-\cos\ x)+c$
$\displaystyle \int\ e^{-x}\sin\ x\ dx=-\displaystyle \frac{e^{-x}}{2}(\sin\ x+\cos\ x)+c$

$c$は積分定数

出典:広島大学
投稿日:2021.08.30

<関連動画>

PAGE TOP