09愛知県教員採用試験(数学:2番 極限値) - 質問解決D.B.(データベース)

09愛知県教員採用試験(数学:2番 極限値)

問題文全文(内容文):
$0 \leqq x \leqq \displaystyle \frac{1}{\sqrt{ 3 }}$
$f(x)=\displaystyle \int_{x}^{\sqrt{ 3 }x}\sqrt{ 1-t^2 }\ dt$とする。

$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(x)}{x}$の極限値を求めよ。

出典:愛知県教員採用試験
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$0 \leqq x \leqq \displaystyle \frac{1}{\sqrt{ 3 }}$
$f(x)=\displaystyle \int_{x}^{\sqrt{ 3 }x}\sqrt{ 1-t^2 }\ dt$とする。

$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(x)}{x}$の極限値を求めよ。

出典:愛知県教員採用試験
投稿日:2021.08.27

<関連動画>

大学入試問題#70 鳥取大学医学部(2012) 微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a,b$:実数
$0 \lt a \lt 2$
$\displaystyle \int_{a}^{x}f(x-t)f(t)dt=\cos(ax)-b$

(1)$a,b$の値を求めよ。
(2)$f(x)$を求めよ
(3)$f(x)$が最大値をとるときの$x$の値を求めよ。

出典:2012年鳥取大学医学部 入試問題
この動画を見る 

大学入試問題#778「ウォリス積分なら一撃」 横浜国立大学(1994) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^3\theta\ \cos2\theta\ d\theta$

出典:1994年横浜国立大学 入試問題
この動画を見る 

【数Ⅲ】【積分とその応用】次の極限値を求めよ。(1)lim[n→∞]{√(n+1)+√(n+2)+……+√(2n)}/{1+√2+√3+……+√n}他1問

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよ。
(1) $\displaystyle \lim_{ n \to 0 }\dfrac{\sqrt{n+1}+\sqrt{n+2}+\sqrt{n+3}+…+\sqrt{2n}}{1+\sqrt{2}+\sqrt{3}+\sqrt{4}+…+\sqrt{n}}$

(2) $\displaystyle \lim_{ n \to 0 }\log{\sqrt[ n ]{ n+1 }}+\log{\sqrt[ n ]{ n+2 }}+\log{\sqrt[ n ]{ n+3 }}+…+\log{\sqrt[ n ]{ 2n }}-\log n$


この動画を見る 

大学入試問題#366「これは有名問題」 静岡大学2014 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#静岡大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\cos^3x}{\cos\ x+\sin\ x}dx$

出典:2014年静岡大学 入試問題
この動画を見る 

福田の数学〜東京医科歯科大学2024医学部第3問〜定積分の性質と置換積分の計算の解

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{3} f(x)$を連続関数とするとき、次の各問いに答えよ。
(1)次の等式を示せ。$\displaystyle \int_{0}^{ \frac{\pi}{2} } f(\sin 2x)\sin x dx=\displaystyle \int_{0}^{ \frac{\pi}{2} } f(\sin 2x)\cos x dx$
(2)次の等式を示せ。$\displaystyle \int_{0}^{ \frac{\pi}{2} } f(\sin 2x)(\sin x+\cos x) dx=\displaystyle \int_{-1}^{1} f(1-t^2)dt$
(3)次の定積分の値を求めよ。$\displaystyle \int_{0}^{ \frac{\pi}{2} } \frac{\sin x}{1+\sqrt{\sin 2x}} dx$
この動画を見る 
PAGE TOP