福田の数学〜京都大学2024年文系第3問〜絶対値の付いた2次関数の最大値 - 質問解決D.B.(データベース)

福田の数学〜京都大学2024年文系第3問〜絶対値の付いた2次関数の最大値

問題文全文(内容文):
$\Large\boxed{3}$ $a$は正の定数とする。次の関数の最大値を求めよ。
$f(x)$=$\displaystyle\left|x^2-\left(ax+\frac{3}{4}a^2\right)\right|$+$ax$+$\displaystyle\frac{3}{4}a^2$ (-1≦$x$≦1)
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $a$は正の定数とする。次の関数の最大値を求めよ。
$f(x)$=$\displaystyle\left|x^2-\left(ax+\frac{3}{4}a^2\right)\right|$+$ax$+$\displaystyle\frac{3}{4}a^2$ (-1≦$x$≦1)
投稿日:2024.03.14

<関連動画>

指数方程式 指数公式 杏林大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4^x-1=2^{x-\displaystyle \frac{1}{2}}$

出典:杏林大学 過去問
この動画を見る 

(誘導あり)ゴリゴリの計算問題【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$f(x)=2\log (1+e^x)-x-\log 2$
のとき


$\displaystyle \int_{0}^{ \log 2 } (x-\log 2)e^{-f(x)} dx$

を求めよ

大阪大過去問
この動画を見る 

福田の数学〜上智大学2024TEAP利用型文系第3問(2)〜角の二等分線の長さを求める

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}(2)AB=4,BC=2\sqrt{6},CA=2\sqrt{3}-2$の$\triangle ABC$がある。$\angle A$の二等分線と辺BCの交点をDとする。このとき、$\triangle ABC$の面積は$\boxed{フ}+\boxed{ヘ}\sqrt{\boxed{ホ}}$であり、$AD=\boxed{マ}+\boxed{ミ}\sqrt{\boxed{ム}}$である。
この動画を見る 

【数学】東大理科2022大問6ガチ解説!(1)の数え上げ方(抜けもれなく数えるために)

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東大理系数学2022大問6
Oを原点とする座標平面上で考える。0以上の整数kに対して、$\vec{v_k}$を
$\vec{v_k}=\left(\cos\dfrac{2k\pi}{3}\right),\sin\left(\dfrac{2k\pi}{3}\right)$
と定める。投げたとき表と裏がどちらも1/2の確率で出るコインをN回投げて座標平面上に点$X_0,X_1,X_2,…,X_N$を以下の規則(i)(ii)に従って定める。
(i)$X_0$はOにある。
(ii)nを1以上N以下の整数とする。$X_{n_1}$が定まったとし、$X_n$を次のように定める。
・n回目のコイン投げで表が出た場合、
$\vec{OX_n}=\vec{OX_{n-1}}+\vec{v_k}$
により$X_n$を定める。ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。
・n回目のコイン投げで裏が出た場合、$X_n$を$X_{n-1}$と定める。
(1)$N=8$とする。$X_8$がOにある確率を求めよ。
(2)$N=200$とする。$X_{200}$がOにあり、かつ、合計200回のコイン投げで表がちょうどr回出る確率を$p_r$とおく。ただし$0\leqq r\leqq 200$とする。$p_r$を求めよ。また$p_r$が最大となるrの値を求めよ。
この動画を見る 

ベクトルの簡単すぎる京大の問題【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\triangle OAB$において$OA=3,OB=2,\angle AOB=90^{ \circ }$とする。$\triangle OAB$の垂心を$H$とするとき,$\overrightarrow{OH}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。

京都大過去問
この動画を見る 
PAGE TOP