【数C】【平面上のベクトル】ベクトルと図形1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【平面上のベクトル】ベクトルと図形1 ※問題文は概要欄

問題文全文(内容文):
問題1
ABCの辺ABBCCAを2:1に内分する点を、それぞれA1B11C1とする。更に、A1B1C1の辺A1B1B1C1を2:1に内分する点を、それぞれA2B2とする。このとき、A2B2//ABであることを示せ。

問題2
△ABCにおいて、辺BCを2:1に外分する点をP,辺ABを1:2に内分する点をQ、辺CAの中点をRとする。
(1)3点P,Q,Rは一直線上にあることを証明せよ。
(2)QR:QPを求めよ。

問題3
平行四辺形ABCDにおいて、辺ABを3:2に内分する点をP、対角線BDを2:5に内分する点をQとする。
(1)3点P,Q,Cは一直線上にあることを証明せよ。
(2)PQ:QCを求めよ。

問題4
△ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD、BEの交点をPとする。AB=bAC=cとするとき、APbcを用いて表せ。
チャプター:

0:00 オープニング
0:04 問題1解説
6:31 問題2解説
11:24 問題3解説
15:41 問題4解説

単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
ABCの辺ABBCCAを2:1に内分する点を、それぞれA1B11C1とする。更に、A1B1C1の辺A1B1B1C1を2:1に内分する点を、それぞれA2B2とする。このとき、A2B2//ABであることを示せ。

問題2
△ABCにおいて、辺BCを2:1に外分する点をP,辺ABを1:2に内分する点をQ、辺CAの中点をRとする。
(1)3点P,Q,Rは一直線上にあることを証明せよ。
(2)QR:QPを求めよ。

問題3
平行四辺形ABCDにおいて、辺ABを3:2に内分する点をP、対角線BDを2:5に内分する点をQとする。
(1)3点P,Q,Cは一直線上にあることを証明せよ。
(2)PQ:QCを求めよ。

問題4
△ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD、BEの交点をPとする。AB=bAC=cとするとき、APbcを用いて表せ。
投稿日:2024.12.19

<関連動画>

福田の数学〜慶應義塾大学2023年医学部第1問(1)〜図形の証明

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#式と証明#平面上のベクトル#図形と計量#三角比への応用(正弦・余弦・面積)#図形と方程式#恒等式・等式・不等式の証明#点と直線#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1 (1)三角形ABCにおいて辺BCを4:3に内分する点をDとするとき、等式
    AB2+    AC2=AD2+    BD2
が成り立つ。

203慶應義塾大学医学部過去問
この動画を見る 

【数B】ベクトル:ベクトルの基本⑧大きさを求めたいときの絶対値の2乗

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルの絶対値を求めるために2乗の計算をしてみた.
この動画を見る 

【位置ベクトルっていつ使うの?】ベクトルの基礎と考え方を解説!〔数学、高校数学〕

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
ベクトルの基礎と考え方について解説します。
この動画を見る 

【数B】平面ベクトル:ベクトルの基本① 基本的な考え方「終わり-始め」

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルの基本的な考え方、ベクトルの和、始点の変更に関して解説していきます.
この動画を見る 

【わかりやすく解説】位置ベクトル(内分・外分・重心)【数学B/平面ベクトル】

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
ABCにおいて、辺BC2:3に内分する点をD, 辺BC2:1に外分する点をEとし、三角形の重心をGとする。
AB=b,AC=cとするとき、次のベクトルをb,cを用いて表せ。

(1)AD
(2)AE
(3)AG
(4)GD
(5)DE
この動画を見る 
PAGE TOP preload imagepreload image