【数Ⅲ】【積分とその応用】y軸周りの回転体の体積2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【積分とその応用】y軸周りの回転体の体積2 ※問題文は概要欄

問題文全文(内容文):
曲線y=cosx(0≦x≦π)とy軸、および直線y=−1で囲まれた部分を、y軸の周りに1回転 させてできる立体の体積Vを求めよ。
チャプター:

0:00 オープニング
0:05 解説
3:11 エンディング

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線y=cosx(0≦x≦π)とy軸、および直線y=−1で囲まれた部分を、y軸の周りに1回転 させてできる立体の体積Vを求めよ。
投稿日:2024.12.21

<関連動画>

【高校数学】毎日積分23日目【難易度:★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^{\frac{π}{4}}sinθcos2θdθ$
これを解け.
この動画を見る 

#宮崎大学(2016)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} \displaystyle \frac{\sqrt{ 1+log\ x }}{x} dx$

出典:2016年宮崎大学
この動画を見る 

【数Ⅲ】【積分とその応用】体積の2等分 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
a>0とする。曲線y=a²-x²(-a≦x≦a)とx軸で囲まれた部分を、軸の周りに1回転させてできる立体の体積を、曲線y=kx²をy軸の周りに1回転させてできる曲面で2等分したい。定数kの値を求めよ。
この動画を見る 

名古屋市立(医)積分 初のVチューバー解説 アイシアちゃん/仮の姿は東大数学科院卒杉山聡

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n:$自然数
$S_{n}:y=e^{-x}\sin x$と$y$軸の囲む面積$((n-1)\pi \leqq x \leqq n\pi)$

(1)
$S_{n}$は?

(2)
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n S_{k}$は?
この動画を見る 

大学入試問題#134 京都工芸繊維大学(2018) 不定積分

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \{log(3+\cos^2\theta)\}\cos\theta d \theta$を計算せよ。

出典:2018年京都工芸繊維大学 入試問題
この動画を見る 
PAGE TOP