【数C】【複素数平面】 極形式から三角比の値を求める ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【複素数平面】 極形式から三角比の値を求める ※問題文は概要欄

問題文全文(内容文):
$1+i$、$\sqrt{3}+i$を極形式で表すことにより、$cos \displaystyle \frac{5π}{12}$と$sin \displaystyle \frac{5π}{12}$の値を求めよ。
チャプター:

0:00 オープニング
0:04 極形式どうしの掛け算、まず 極形式で表してみる!
2:14 極形式どうしの掛け算を行い、5π/12を出してみる!
6:28 エンディング

単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
$1+i$、$\sqrt{3}+i$を極形式で表すことにより、$cos \displaystyle \frac{5π}{12}$と$sin \displaystyle \frac{5π}{12}$の値を求めよ。
投稿日:2025.01.21

<関連動画>

福田の数学〜東京大学2025理系第6問〜複素数平面上の点の軌跡と実部の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{6}$

複素数平面上の点$\dfrac{1}{2}$を中心とする

半径$\dfrac{1}{2}$の円の周から原点を除いた曲線を

$C$とする。

(1)曲線$C$上の複素数$z$に対し、$\dfrac{1}{z}$の実部は

$1$であることを示せ。

(2)$\alpha,\beta$を曲線$C$上の相異なる複素数とするとき、

$\dfrac{1}{alpha^2}+\dfrac{1}{\beta^2}$がとりうる範囲を

複素数平面上に図示せよ。

(3)$\nu $を(2)で求めた範囲に属さない複素数とするとき、

$\dfrac{1}{\gamma}$の実部がとりうる値の

最大値と最小値を求めよ。

$2025$年東京大学理系過去問題
この動画を見る 

福田の数学〜千葉大学2023年第8問〜iのn乗根Part1

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{8}$ 実数$a$,$b$と虚数単位$i$を用いて複素数$z$が$z$=$a$+$bi$の形で表されるとき、$a$を$z$の実部、$b$を$z$の虚部と呼び、それぞれ$a$=$Re(z)$,$b$=$Im(z)$と表す。
(1)$z^3$=$i$を満たす複素数$z$をすべて求めよ。
(2)$z^{100}$=$i$を満たす複素数$z$のうち、$Re(z)$≦$\frac{1}{2}$かつ$Im(z)$≧0を満たすものの個数を求めよ。
(3)$n$を正の整数とする。$z^n$=$i$を満たす複素数$z$のうち、$Re(z)$≧$\frac{1}{2}$を満たすものの個数を$N$とする。$N$>$\frac{n}{3}$となるための$n$に関する必要十分条件を求めよ。
この動画を見る 

18愛知県教員採用試験(数学:10番 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$\boxed{10}$ $w=\frac{z-2i}{z+i},|z|=2$
(1)wはどのような図形か
(2)|w-i|の最大値
この動画を見る 

2023九州大学 4次方程式と複素平面上の三角形

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$x^4-2x^3+3x^2-2x+1=0$を解け.
(2)複素数平面上の$\triangle ABC$の頂点を表す複素数を$\alpha,\beta,\delta$とする.
$(\alpha-\beta)^4+(\beta-\delta)+(\delta-\alpha)^4=0$が成り立つとき,$\triangle ABC$はどのような三角形か.

2023九州大過去問
この動画を見る 

名古屋大 3次式の係数決定

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+ax^2+bx+c$
$a,b,c$は整数
$f(\sqrt{ 2 })=0$
$w=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$
$f(w)$は実数
$a,b,c$の値を求めよ

出典:2006年名古屋大学 過去問
この動画を見る 
PAGE TOP