【数Ⅰ】【2次関数】2次関数の解の範囲 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【2次関数】2次関数の解の範囲 ※問題文は概要欄

問題文全文(内容文):
次の2次方程式が実数解をもつように、実数mの値の範囲を定めよ。
  (1)  x²+2mx+3=0       (2) x²+mx+m=0
2次方程式 x²-2mx-4m=0 が次の条件を満たすように、定数mの値の範囲を定めよ。
  (1) 異なる2つの実数解をもつ (2) 実数解をもたない
次の条件を満たすように、実数mの値の範囲を定めよ。
  (1) 2次関数 y=x²-2mx+2m+3 のグラフがx軸と共有点をもつ。
  (2) 2次関数 y=x²+2mx-m+2 のグラフがx軸と共有点をもたない。
チャプター:

0:00 問題1の解説
3:07 問題2の解説
5:39 問題3(1)の解説
8:41 問題3(2)の解説

単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の2次方程式が実数解をもつように、実数mの値の範囲を定めよ。
  (1)  x²+2mx+3=0       (2) x²+mx+m=0
2次方程式 x²-2mx-4m=0 が次の条件を満たすように、定数mの値の範囲を定めよ。
  (1) 異なる2つの実数解をもつ (2) 実数解をもたない
次の条件を満たすように、実数mの値の範囲を定めよ。
  (1) 2次関数 y=x²-2mx+2m+3 のグラフがx軸と共有点をもつ。
  (2) 2次関数 y=x²+2mx-m+2 のグラフがx軸と共有点をもたない。
投稿日:2025.02.03

<関連動画>

【高校数学】  数Ⅰ-57  2次方程式④

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2次方程式$x^2+4x+k=0$が異なる2つの実数解をもつように、定数人の範囲を求めよう。
②2次方程式$x^2+(2k-1)x+k^2-3k-1=0$が実数解をもつように、定数kの範囲を求めよう。
③2次方程式$4x^2+(k+2)x+k-1=0$が重解をもつように、定数kの値を定め、そのとき の重解を求めよう。
この動画を見る 

【数Ⅰ】【図形と計量】正弦定理と余弦定理の応用2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2地点P、Q間の距離を求めるために、1つの直線上にある3地点A、B、Cをとったら、AB=400m、BC=$100\sqrt{3}$m、∠QAB=30°、∠PBA=∠QBC=75°、∠PCB=45°であった。P、Q間の距離を求めよ。
この動画を見る 

【数Ⅰ】数と式:繁分数① 次の式を簡単にしよう。{(a+x)/(a-x)-(a-x)/(a+x)}/{(a+x)/(a-x)+(a-x)/(a+x)}

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を簡単にしよう。
$\dfrac{\dfrac{a+x}{a-x}-\dfrac{a-x}{a+x}}{\dfrac{a+x}{a-x}+\dfrac{a-x}{a+x}}$
この動画を見る 

【高校数学】数Ⅰ-41 2次関数⑦(移動編)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①放物線$y=-2x^2-4x+1$をx軸方向に3、y軸方向に-1だけ平行移動して得られる放物線の方程式を求めよう。

②放物線$y=-2x^2-4x+3$の、x軸、y軸、原点それぞれに関する対称移動後の放物線の方程式を求めよう。
この動画を見る 

【高校数学】  数Ⅰ-85  三角比⑩

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$0° \leqq \theta \leqq 180°$であるとき、$y=\cos^2\theta-2\sin\theta-1$の最大値と最小値を求め、そのときの$\theta$も求めよう。
この動画を見る 
PAGE TOP