【数Ⅰ】【図形と計量】面積応用3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【図形と計量】面積応用3 ※問題文は概要欄

問題文全文(内容文):
次のような四角形ABCDの面積を求めよ。
(1)∠A=135°、∠C=45°、AB=1、BC=3、CD=$\sqrt{2}$、DA=$\sqrt{2}$
(2)∠B=120°、AB=3、BC=5、CD=5、DA=4
チャプター:

0:00 オープニング
0:05 問題文(1)
0:21 アプローチ+解説(1)
1:41 問題文(2)
1:51 アプローチ
2:54 解説(2)
6:34 (2)の別解:ヘロンの公式
7:55 エンディング

単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のような四角形ABCDの面積を求めよ。
(1)∠A=135°、∠C=45°、AB=1、BC=3、CD=$\sqrt{2}$、DA=$\sqrt{2}$
(2)∠B=120°、AB=3、BC=5、CD=5、DA=4
投稿日:2025.02.09

<関連動画>

福田の数学〜慶應義塾大学2023年薬学部第3問〜データの分析と相関係数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ ある病院に入院中の患者20人について、ある検査値と、薬Xと薬Yの使用量との関係について調べた。その結果をまとめたものが以下の表であり、斜線は薬を使用していないことを示す。
(1)薬Xのみを使用している患者の検査値の平均値は$\boxed{\ \ ネ\ \ }$(mg/dL)、薬Yのみを使用している患者の検査値の平均値は$\boxed{\ \ ノ\ \ }$(mg/dL)である。
したがって、薬Xと薬Yのどちらも使用していない患者の検査値の平均と比べ、薬Xのみを使用している患者の検査値の平均値は$\boxed{\ \ ハ\ \ }$、薬Yのみを使用している患者の検査値の平均値は$\boxed{\ \ ヒ\ \ }$。
(2)薬Xと薬Yを併用している患者の検査値の第1四分位数は$\boxed{\ \ フ\ \ }$(mg/dL)、第3四分位数は$\boxed{\ \ ヘ\ \ }$(mg/dL)である。
(3)薬Xの使用量と検査値との相関係数は、薬Xのみを使用している場合は0.78であり、薬Xと薬Yを併用している場合は$\boxed{\ \ ホ\ \ }$である。
よって薬Xと薬Yを併用すると、薬Xの使用量と検査値の相関係数が$\boxed{\ \ マ\ \ }$と考えられる。
なお下線部の0.78は、小数第3位を四捨五入した値である。
ただし、$\sqrt 2$=1.41, $\sqrt 5$=2.23, $\sqrt{30}$=5.48, $\sqrt{101}$=10.05として計算しなさい。

2023慶應義塾大学薬学部過去問
この動画を見る 

「二次関数の平行移動・対称移動」全パターン【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次関数$y=2x^2-4x+5$ ・・・①について
$y=2x^2-4x+5$
$\ =2(x^2-2x)+5$
$\ 2\{(x-1)^2-1\}+5$
$\ 2(x-1)^2+3$
であるから、頂点$(1,3)$となる。 ・・・②

(1)
①を$x$軸方向に$3,y$軸方向に$-4$平行移動して得られるグラフの方程式を求めよ。

(2)
①のグラフを$x$軸に関して対称移動させた関数の方程式を求めよ。

(3)
①のグラフを$y$軸に関して対称移動させた関数の方程式を求めよ。

(4)
①のグラフを原点に関して対称移動させた関数の方程式を求めよ。

(5)
$x$軸方向に$1,y$軸方向に$-2$平行移動して、$x$軸に関して対称移動させたグラフの方程式が①になるようなグラフの方程式を求めよ。

(6)
任意の実数$k$について2次関数$y=3x^2+kx-2k+1$のグラフは、ある定点を通る。
その定点の座標を求めよ。
この動画を見る 

【手元動画】数学IA 図形と計量の攻略法

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$\triangle ABC$において、$BC=2\sqrt{ 2 }$とする。
$\angle ACB$の二等分線と辺$AB$の交点を$D$とし、$CD=\sqrt{ 2 }, \cos \angle BCD=\displaystyle \frac{3}{4}$とする。
このとき、$BD=$[ア]であり$\sin \angle ADC=\displaystyle \frac{[イウ]}{[エ]}$である。
$\displaystyle \frac{AC}{AD}=\sqrt{ オ }$であるから$AD=[カ]$である。
$\triangle ABC$の外接円の半径は$\displaystyle \frac{キ\sqrt{ ク }}{ケ}$である
この動画を見る 

大学入試じゃね? 灘高校 小数部分

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
正の数xの小数部分を
$(x - \langle x \rangle)^2 + (3 \langle x \rangle -1)^2 = 6$のとき
$x - \langle x \rangle = ? ,x=?$

灘高等学校
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(3)〜集合と対数不等式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3)関数$f(x)=\log_{\frac{1}{3}}\sqrt{3x^3-2x^2}$と$g(x)=\log_9(3x^2-2)$の定義域をそれぞれ
集合A,Bで表すと、$A\cap B=\left\{x|xはx \gt \boxed{\ \ オ\ \ }$を満たす実数である。
実数xが集合$A\cap B$の要素であるとき、$f(x)+g(x) \lt 0$となるための条件は
$\boxed{\ \ オ\ \ } \lt x \lt \boxed{\ \ カ\ \ }$または$x \gt \boxed{\ \ キ\ \ }$となることである。

2022慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP