【数C】【平面上のベクトル】位置ベクトル ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【平面上のベクトル】位置ベクトル ※問題文は概要欄

問題文全文(内容文):
問題1
$\triangle \rm{ABC}$の重心を$\rm{G}$とするとき、この平面上の任意の点$\rm{P}$に対して、等式$\rm{\overrightarrow{AP}+\overrightarrow{BP}-2\overrightarrow{CP}=3\overrightarrow{GC}}$が成り立つことを証明せよ。

問題2
$\triangle \rm{ABC}$と点$\rm{P}$に対して、次の等式が成り立つとき、点$\rm{P}$の位置をいえ。
(1) $\rm{\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{AB}}$
(2)$\rm{\overrightarrow{AP}+\overrightarrow{BP}+\overrightarrow{CP}=\vec{0}} $
(3)$\rm{\overrightarrow{PA}+\overrightarrow{PC}=\overrightarrow{AC}}$

問題3
$\triangle \rm{ABC}$と点$\rm{P}$に対して、等式 $\rm{5\overrightarrow{AP}+4\overrightarrow{BP}+3\overrightarrow{CP}=\vec{0}}$が成り立っている。
(1)点$\rm{P}$の位置をいえ。
(2)$\triangle \rm{PBC}:\triangle \rm{PCA}:\triangle \rm{PAB}$を求めよ。
チャプター:

0:00 オープニング
0:04 問題1
2:35 問題2
6:41 問題3

単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
$\triangle \rm{ABC}$の重心を$\rm{G}$とするとき、この平面上の任意の点$\rm{P}$に対して、等式$\rm{\overrightarrow{AP}+\overrightarrow{BP}-2\overrightarrow{CP}=3\overrightarrow{GC}}$が成り立つことを証明せよ。

問題2
$\triangle \rm{ABC}$と点$\rm{P}$に対して、次の等式が成り立つとき、点$\rm{P}$の位置をいえ。
(1) $\rm{\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{AB}}$
(2)$\rm{\overrightarrow{AP}+\overrightarrow{BP}+\overrightarrow{CP}=\vec{0}} $
(3)$\rm{\overrightarrow{PA}+\overrightarrow{PC}=\overrightarrow{AC}}$

問題3
$\triangle \rm{ABC}$と点$\rm{P}$に対して、等式 $\rm{5\overrightarrow{AP}+4\overrightarrow{BP}+3\overrightarrow{CP}=\vec{0}}$が成り立っている。
(1)点$\rm{P}$の位置をいえ。
(2)$\triangle \rm{PBC}:\triangle \rm{PCA}:\triangle \rm{PAB}$を求めよ。
投稿日:2025.02.16

<関連動画>

【わかりやすく】2点を結ぶベクトルの成分表示(高校数学B/C/平面ベクトル)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
4点$O(0,0),A(3,0),B(6,2),C(2,1)$について、次のベクトルを成分表示で表せ。
また、その大きさを求めよ。
(1)$\overrightarrow{ OC }$
(2)$\overrightarrow{ AB }$
(3)$\overrightarrow{ BC }$
(4)$\overrightarrow{ CO }$
この動画を見る 

数学「大学入試良問集」【14−4内心と平面ベクトルと面積の問題】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle ABC$において、$AB=3,BC=4,CA=2$とする。
このとき、$\angle A$と$\angle B$の2等分線の交点を$I$とする。

(1)$\overrightarrow{ AI }$を$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。
(2)$\triangle ABC$の面積を求めよ。
(3)$\triangle IBC$の面積を求めよ。
この動画を見る 

【数B】ベクトル:ベクトルの基本⑭係数比較、メネラウスの定理でベクトルを求める

アイキャッチ画像
単元: #数A#図形の性質#平面上のベクトル#内心・外心・重心とチェバ・メネラウス#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD,BEの交点をPとする。ABをb,ACをcとするとき、APをb,cを用いて表せ.
この動画を見る 

福田の数学〜早稲田大学2024社会科学部第2問〜三角形の内心と垂心の位置ベクトル

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$
\begin{eqnarray}
\fcolorbox{black}{ white }{$2$}OA = 6, \,OB = 5,\,AB=7である\triangle OABにおいて、\vec{a} \ = \ \vec{OA} , \ \vec{b} \ = \ \vec{OB}とおく。
\end{eqnarray}
$
$
\begin{eqnarray}
(1)\triangle OABの内心を1、辺ABと直線OIの交点をCとする。\vec{OC}を\vec{a}, \ \vec{b}で表せ。
\end{eqnarray}
$
$
\begin{eqnarray}
(1) \vec{OI}を \vec{a}, \ \vec{b}で表せ。
\end{eqnarray}
$
この動画を見る 

【高校数学】 数B-5 ベクトルの式の計算②

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の等式を満たす$\vec{ x },$を$\vec{ a },\vec{ b }$を用いて表そう。

①$\begin{eqnarray}
\left\{
\begin{array}{l}
2\vec{ x } + \vec{ y } = \vec{ a } \\
\vec{ x } + \vec{ y } = \vec{ b }
\end{array}
\right.
\end{eqnarray}$

②$\begin{eqnarray}
\left\{
\begin{array}{l}
2\vec{ x } + 3\vec{ y } = \vec{ a } + \vec{ b }\\
\vec{ x } - \vec{ y } = \vec{ a }-\vec{ b }
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP