【数Ⅲ】【積分とその応用】面積2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【積分とその応用】面積2 ※問題文は概要欄

問題文全文(内容文):
次の楕円によって囲まれた図形の面積を求めよ。
(1) 2x²+3y²=6
(2) 3x²+4y²=1
チャプター:

0:00 オープニング
0:05 (1)解説
0:41 (1)別解
2:17 (2)解説
2:53 (1)別解
4:19 エンディング

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の楕円によって囲まれた図形の面積を求めよ。
(1) 2x²+3y²=6
(2) 3x²+4y²=1
投稿日:2025.03.17

<関連動画>

福田の数学〜上智大学2023年TEAP利用型理系第3問Part1〜容器に水を入れる

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ $\pi$を円周率とする。$f(x)$=$x^2(x^2-1)$とし、$f(x)$の最小値を$m$とする。
(1)$m$=$\displaystyle\frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}$ である。
(2)$y$=$f(x)$で表される曲線を$y$軸の周りに1回転させてできる曲面でできた器に、$y$軸方向から静かに水を注ぐ。
(i)水面が$y$=$a$(ただし$m$≦$a$≦0)になったときの水面の面積は$\boxed{\ \ セ\ \ }$である。
(ii)水面が$y$=0になったときの水の体積は$\displaystyle\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}\pi$ である。
(iii)上方から注ぐ水が単位時間あたり一定量であるとする。水面が$y$=0に達するまでは、水面の面積は、水を注ぎ始めてからの時間の$\displaystyle\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$ 乗に比例して大きくなる。
(iv)水面が$y$=2になったときの水面の面積は$\boxed{\ \ テ\ \ }\pi$であり、水の体積は$\displaystyle\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}\pi$ である。
この動画を見る 

17東京都教員採用試験(数学:3番 x軸回転体)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
3⃣$C_1:y=logx , C_2:y=\frac{1}{2}log(x≠2)$
$C_1$,$C_2$の交点x座標をa
(1)aの値
(2)$C_1$,$C_2$,x軸で囲まれた面積S
(3)$C_1$,$C_2$,x軸で囲まれた図形をx軸中心に回転した体積V
この動画を見る 

大学入試問題#200 大阪教育大学2022 定積分 King property

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#大阪教育大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi}\displaystyle \frac{x\ \sin\ x}{8+\sin^2x}\ dx$

出典:2022年大阪教育大学 入試問題
この動画を見る 

【数Ⅲ-161】定積分で表された関数④(最大最小編)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数④・最大最小編)

①関数$f(x)=\int_0^1(e^t-xt)^2dt$の最小値とそのときの$x$の値を求めよ。

②積分$\int_0^\frac{\pi}{2}(\sin x-kx)^2dx$の値を最小にする実数$k$の値と、そのときの積分値を求めよ。

この動画を見る 

福田の数学〜名古屋大学2022年理系第4問〜定積分の極限と方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)は区間$x \geqq 0$において連続な増加関数で$f(0)=1$を満たすとする。
ただしf(x)が区間$x \geqq 0$における増加関数であるとは、区間内の任意の実数$x_1,x_2$に対し
$x_1 \lt x_2$ならば$f(x_1) \lt f(x_2)$が成り立つ時をいう。以下、nは正の整数とする。
(1)$\lim_{n \to \infty}\int_0^{2-\frac{1}{n}}\frac{f(x)}{2-x}dx=\infty$ を示せ。
(2)区間$y \gt 2$ において関数$F_n(y)$を$F_n(y)=\int_{2+\frac{1}{n}}^y\frac{f(x)}{2-x}dx$と定めるとき、

$\lim_{y \to \infty}F_n(y)=\infty$を示せ。また$2+\frac{1}{n}$より大きい実数$a_n$で

$\int_0^{2-\frac{1}{n}}\frac{f(x)}{2-x}dx+\int_{{2+\frac{1}{n}}}^{a_n}\frac{f(x)}{2-x}dx=0$

を満たすものがただ1つ存在することを示せ。
(3)(2)の$a_n$について、不等式$a_n \lt 4$がすべてのnに対して成り立つことを示せ。

2022名古屋大学理系過去問
この動画を見る 
PAGE TOP