【数Ⅲ】【積分とその応用】面積3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【積分とその応用】面積3 ※問題文は概要欄

問題文全文(内容文):
次の曲線で囲まれた図形の面積を求めよ。
(1) y²=x²(1-x)
(2) |y+1|=x|x-3|
チャプター:

0:00 オープニング
0:05 (1)解説
3:31 (2)解説
5:26 エンディング

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線で囲まれた図形の面積を求めよ。
(1) y²=x²(1-x)
(2) |y+1|=x|x-3|
投稿日:2025.03.17

<関連動画>

福田の一夜漬け数学〜積分・面積と体積〜切ってから回転その2(受験編)

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 空間内に3点$P\left(1,\displaystyle \frac{1}{2},0\right),$$Q\left(1,-\displaystyle \frac{1}{2},0\right),$$R\left(\displaystyle \frac{1}{4},0,\displaystyle \frac{\sqrt3}{4}\right)$を頂点とする
正三角形の板$S$がある。$S$を$z$軸のまわりに1回転させたとき、$S$が
通過する点全体の作る立体の面積を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学薬学部2025第1問(4)〜円柱を切ってできる立体の体積と側面積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#立体図形#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(4)$xyz$空間において、

$xy$平面上に$(0,0,0)$を中心とする半径$2$の円がある。

この円と、$(0,0,2\sqrt3)$を中心とする半径$2$の円を

底面とする円柱を、

原点を通り$xz$平面と$30$度の角をなす平面によって

切断し、$2$つの立体に分ける。

いま$2$つの立体のうち、

体積の小さい方の立体について考える。

その立体の体積を$V$、切り口の面積を$S_1$、

円柱の側面であった部分の面積を$S_2$とする。

(i)$V=\boxed{ケ}$

(ii)$S_1=\boxed{コ},S_2=\boxed{サ}$である。
    
この動画を見る 

#18数検1級1次過去問 3重積分

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\boxed{7}$

$D:x^2+y^2 \leqq z \leqq 2x$
$ \displaystyle \iiint_D \ dx\ dy\ dz$
の値を求めよ.
この動画を見る 

#数検準1級1次 #7

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} (1+log x)^2$ $dx$

出典:数検準1級1次
この動画を見る 

会津大学2014 #Shorts #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{x(log\ x)^2}$

出典:2014年会津大学
この動画を見る 
PAGE TOP