問題文全文(内容文):
放物線$y=x^2-6x+7$と、この放物線上の点$(4,-1),(0,7)$における接線で囲まれた図形の面積を求めよ。
放物線$y=x^2-6x+7$と、この放物線上の点$(4,-1),(0,7)$における接線で囲まれた図形の面積を求めよ。
チャプター:
0:00 オープニング
0:05 問題文、解説
3:13 別解
4:32 エンディング
単元:
#数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
放物線$y=x^2-6x+7$と、この放物線上の点$(4,-1),(0,7)$における接線で囲まれた図形の面積を求めよ。
放物線$y=x^2-6x+7$と、この放物線上の点$(4,-1),(0,7)$における接線で囲まれた図形の面積を求めよ。
投稿日:2025.03.14





