【数Ⅱ】【微分法と積分法】接線で囲まれた面積 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【微分法と積分法】接線で囲まれた面積 ※問題文は概要欄

問題文全文(内容文):
放物線y=x26x+7と、この放物線上の点(4,1),(0,7)における接線で囲まれた図形の面積を求めよ。
チャプター:

0:00 オープニング
0:05 問題文、解説
3:13 別解
4:32 エンディング

単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線y=x26x+7と、この放物線上の点(4,1),(0,7)における接線で囲まれた図形の面積を求めよ。
投稿日:2025.03.14

<関連動画>

弘前大 積分 面積公式導出 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#数学(高校生)#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'90弘前大学過去問題
C:y=x3(a+3)x2+3ax+5
L:y=3x4
CとLの共有点が2点のとき、CとLで囲まれる面積
この動画を見る 

【数Ⅱ】積分で面積が求まる理由【面積を表すことが先、積分が後。区分求積法で積分を使わず面積を計算しよう】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
積分で面積が求まる理由に関して解説していきます.
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第3問〜3次方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
aを実数の定数として3次関数
f(x)=9x39x+a
を考える。
(1) y=f(x)のグラフとx軸の共有点が2つ以上あるようなaの範囲は
aである。
(2)a=のとき、方程式f(x)=0の最も小さい解は

であり、y=f(x)のグラフとx軸の囲む図形の面積はである。

2022上智大学文系過去問
この動画を見る 

【数Ⅱ】【微分法と積分法】面積からの定数決定 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線y=axx2 (a>0)x軸で囲まれた図形の面積が92になるように、定数aの値を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第6問〜定積分で表された関数と面積の2等分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
6関数F(x)=12+0x+1(|t1|1)dtに対し、
y=F(x)で定まる曲線をCとする。
(1)F(x)を求めよ。
(2)Cx軸の共有点のうち、x座標が最小の点をP、最大の点をQ
とする。PにおけるCの接線をlとするとき、Cとlで囲まれた図形の面積Sを求めよ。
また、Qを通る直線mがSを2等分するとき、lとmの交点Rの座標を求めよ。

2022慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP preload imagepreload image