【数Ⅱ】【図形と方程式】2直線の関係4 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【図形と方程式】2直線の関係4 ※問題文は概要欄

問題文全文(内容文):
次のような三角形の面積を求めよ。
(1)3点(-1,1),(3,2),(1,4)を頂点とする三角形
(2)3直線$x-3y=-5,4x+3y=-5,2x-y=5$で作られる三角形

平面上の2点をA(1,1),B(2,3)とする。
点Pが放物線$y=x^{2}+4x+11$を動くとき、$\triangle$PABの面積の最小値を求めよ。
チャプター:

0:00 第一問1
2:05 第一問2
4:40 第二問

単元: #数Ⅱ#図形と方程式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のような三角形の面積を求めよ。
(1)3点(-1,1),(3,2),(1,4)を頂点とする三角形
(2)3直線$x-3y=-5,4x+3y=-5,2x-y=5$で作られる三角形

平面上の2点をA(1,1),B(2,3)とする。
点Pが放物線$y=x^{2}+4x+11$を動くとき、$\triangle$PABの面積の最小値を求めよ。
投稿日:2025.03.07

<関連動画>

2打数1安打VS 3打数2安打  証明しろといわれたら数II

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
0<a<bのとき
$\frac{a}{b}$と$\frac{a+1}{b+1}$
どっちが大きい?
この動画を見る 

大学入試問題#120 早稲田大学(2003) 対数の不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a \gt 0,\ a \neq 1$
$log\ a(x+2) \geqq log\ a^2(3x+16)$を解け

出典:2003年早稲田大学 入試問題
この動画を見る 

【数Ⅱ】複素数と方程式:2x²-6x-3=0の解がα、βのとき、①β²/α+α²/β②(2α²-6α-5)(2β²-6β-1)の値を求めよ。

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$2x^2-6x-3=0$の解が$\alpha,\beta$のとき、
①$\dfrac{\beta^2}{\alpha}+\dfrac{\alpha^2}{\beta}
②$(2\alpha^2-6\alpha-5)(2\beta^2-6\beta-1)$の値を求めよ。

この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。三角関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#センター試験・共通テスト関連#学校別大学入試過去問解説(数学)#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[1](1)次の問題Aについて考えよう。
問題A 関数$y=\sin\theta+\sqrt3\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。

$\sin\frac{\pi}{\boxed{ア}}=\frac{\sqrt3}{2}, \cos\frac{\pi}{\boxed{ア}}=\frac{1}{2}$ であるから、三角関数の合成により
$y=\boxed{イ}\sin(\theta+\frac{\pi}{\boxed{ア}})$
と変形できる。よって、yは$\theta=\frac{\pi}{\boxed{ウ}}$で最大値$\boxed{エ}$をとる。

(2)pを定数とし、次の問題Bについて考えよう。
問題B 関数$y=\sin\theta+p\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。
$(\textrm{i})p=0$のとき、yは$\theta=\frac{\pi}{\boxed{オ}}$で最大値$\boxed{カ}$をとる。

$(\textrm{ii})p \gt 0$のときは、加法定理$\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alpha$を用いると
$y=\sin\theta+p\cos\theta=\sqrt{\boxed{キ}}\cos(\theta-\alpha)$

と表すことができる。ただし$\alphaは\sin\alpha=\frac{\boxed{ク}}{\sqrt{\boxed{キ}}}, \cos\alpha=\frac{\boxed{ケ}}{\sqrt{\boxed{キ}}}, 0 \lt \alpha \lt \frac{\pi}{2}$

を満たすものとする。このとき、yは$\theta=\boxed{コ}$で最大値$\sqrt{\boxed{サ}}$をとる。

$(\textrm{iii})p \lt 0$のとき、$y$は$\theta=\boxed{シ}$で最大値$\sqrt{\boxed{ス}}$をとる。

$\boxed{キ}~\boxed{ケ}、\boxed{サ}、\boxed{ス}$の解答群
⓪-1   ①1   ②-p   ③p   \\
④1-p   ⑤1+p   ⑥-p^2   ⑦p^2   ⑧1-p^2   \\
⑨1+p^2   ⓐ(1-p)^2   ⓑ(1+p^2)   \\

$\boxed{コ}、\boxed{シ}$の解答群
⓪$0$    ①$\alpha$    ②$\frac{\pi}{2}$

2021共通テスト数学過去問
この動画を見る 

半角の公式を導く!!(数II)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
半角の公式の証明について説明動画です
この動画を見る 
PAGE TOP