問題文全文(内容文):
三角形$\rm ABC$について次の三直線の方程式を求めよ。またそれらが1点で交わることを示し、その点の座標を求めよ。
(1) 各辺の垂直二等分線
(2) 各頂点から対辺に下した垂線
$x+ay+1=0, ax+(a+2)y+3=0$ が次の条件を満たすとき定数$a$の値をそれぞれ求めよ。
(1) 平行である
(2) 垂直である
三角形$\rm ABC$について次の三直線の方程式を求めよ。またそれらが1点で交わることを示し、その点の座標を求めよ。
(1) 各辺の垂直二等分線
(2) 各頂点から対辺に下した垂線
$x+ay+1=0, ax+(a+2)y+3=0$ が次の条件を満たすとき定数$a$の値をそれぞれ求めよ。
(1) 平行である
(2) 垂直である
チャプター:
0:00 第一問1
5:08 第一問2
7:23 第二問1
9:53 第二問2
10:33 公式を使う理由
単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
三角形$\rm ABC$について次の三直線の方程式を求めよ。またそれらが1点で交わることを示し、その点の座標を求めよ。
(1) 各辺の垂直二等分線
(2) 各頂点から対辺に下した垂線
$x+ay+1=0, ax+(a+2)y+3=0$ が次の条件を満たすとき定数$a$の値をそれぞれ求めよ。
(1) 平行である
(2) 垂直である
三角形$\rm ABC$について次の三直線の方程式を求めよ。またそれらが1点で交わることを示し、その点の座標を求めよ。
(1) 各辺の垂直二等分線
(2) 各頂点から対辺に下した垂線
$x+ay+1=0, ax+(a+2)y+3=0$ が次の条件を満たすとき定数$a$の値をそれぞれ求めよ。
(1) 平行である
(2) 垂直である
投稿日:2025.03.07





