点と直線
難関高校受験生必見!!放物線と比
単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$y=x^2$ $\quad$ $y=\frac{1}{4}x^2$
a:b=?
*図は動画内参照
この動画を見る
$y=x^2$ $\quad$ $y=\frac{1}{4}x^2$
a:b=?
*図は動画内参照
高校数学:数学検定準1級1次:問題1,2 :対数不等式、2直線間の距離
単元:
#数Ⅱ#図形と方程式#指数関数と対数関数#点と直線#対数関数#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
問題1
次の不等式を解きなさい。
$\log_{ \frac{1}{2}} 2x >\log_{ \frac{1}{2}} x^2-2x+3$
問題2
xy平面上の2直線$3x+4y-20=0$と$3x+4y+50=0$の間の距離を求めなさい。
この動画を見る
問題1
次の不等式を解きなさい。
$\log_{ \frac{1}{2}} 2x >\log_{ \frac{1}{2}} x^2-2x+3$
問題2
xy平面上の2直線$3x+4y-20=0$と$3x+4y+50=0$の間の距離を求めなさい。
【わかりやすく】直線に対して対象の点の座標を求めよう(数学Ⅱ 図形と方程式)
単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
直線$y=x+3$に対して、点$A(-2,4)$と対称な点の座標を求めよ。
この動画を見る
直線$y=x+3$に対して、点$A(-2,4)$と対称な点の座標を求めよ。
【短時間でマスター!!】直線の方程式(平行と垂直)の求め方を解説!〔現役講師解説、数学〕
単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
数学2B
直線の方程式
並行と垂直の条件
①点$(1,-3)$を通り、直線$4x+5y=2$に平行な直線
②点$(0,1)$を通り、直線$y=-3x-1$に垂直な直線
この動画を見る
数学2B
直線の方程式
並行と垂直の条件
①点$(1,-3)$を通り、直線$4x+5y=2$に平行な直線
②点$(0,1)$を通り、直線$y=-3x-1$に垂直な直線
サッカーボールの頂点の個数は? 共栄学園(東東京)
単元:
#数Ⅱ#点と直線#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
12個の正五角形と20個の正六角形の合わせて32面からなる多面体
どの頂点にも1個の正五角形と2個の正六角形の面が集まっている
この多面体の頂点の個数は?
共栄学園高等学校
この動画を見る
12個の正五角形と20個の正六角形の合わせて32面からなる多面体
どの頂点にも1個の正五角形と2個の正六角形の面が集まっている
この多面体の頂点の個数は?
共栄学園高等学校
内角を二等分する直線の式 立教新座
【数Ⅱ】間違えやすい? 点と直線の距離の公式の覚え方
単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
点と直線の距離の公式がどっちだっけ…となったとき、そんなときのための講義です。
この動画を見る
点と直線の距離の公式がどっちだっけ…となったとき、そんなときのための講義です。
慶應義塾大 直線の傾き
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2016慶応義塾大学過去問題
aは整数、aの値は?
$f(x)=x^3-x^2-x+c$
$A(0,f(x)),B(a,f(a))$
直線ABと$x=\frac{a}{3}$におけるf(x)の接線が直交する。
この動画を見る
2016慶応義塾大学過去問題
aは整数、aの値は?
$f(x)=x^3-x^2-x+c$
$A(0,f(x)),B(a,f(a))$
直線ABと$x=\frac{a}{3}$におけるf(x)の接線が直交する。
福田の数学〜筑波大学2023年理系第1問〜3次関数の接線と三角形の面積
単元:
#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#平均変化率・極限・導関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#筑波大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 曲線C:$y$=$x$-$x^3$上の点A(1, 0)における接線を$l$とし、Cと$l$の共有点のうちAとは異なる点をBとする。また、-2<$t$<1とし、C上の点P($t$, $t$-$t^3$)をとる。さらに、三角形ABPの面積を$S(t)$とする。
(1)点Bの座標を求めよ。
(2)$S(t)$を求めよ。
(3)$t$が-2<$t$<1の範囲を動くとき、$S(t)$の最大値を求めよ。
2023筑波大学理系過去問
この動画を見る
$\Large\boxed{1}$ 曲線C:$y$=$x$-$x^3$上の点A(1, 0)における接線を$l$とし、Cと$l$の共有点のうちAとは異なる点をBとする。また、-2<$t$<1とし、C上の点P($t$, $t$-$t^3$)をとる。さらに、三角形ABPの面積を$S(t)$とする。
(1)点Bの座標を求めよ。
(2)$S(t)$を求めよ。
(3)$t$が-2<$t$<1の範囲を動くとき、$S(t)$の最大値を求めよ。
2023筑波大学理系過去問
福田の数学〜慶應義塾大学2023年医学部第1問(3)〜曲線と直線で囲まれた面積
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#微分とその応用#積分とその応用#微分法#接線と法線・平均値の定理#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)曲線y=$x$$\log(x^2+1)$のx≧0の部分をCとすると、点(1, log2)におけるCの接線lの方程式はy=$\boxed{\ \ く\ \ }$である。
また、曲線Cと直線l、およびy軸で囲まれた図形の面積は$\boxed{\ \ け\ \ }$である。
2023慶應義塾大学医学部過去問
この動画を見る
$\Large\boxed{1}$ (3)曲線y=$x$$\log(x^2+1)$のx≧0の部分をCとすると、点(1, log2)におけるCの接線lの方程式はy=$\boxed{\ \ く\ \ }$である。
また、曲線Cと直線l、およびy軸で囲まれた図形の面積は$\boxed{\ \ け\ \ }$である。
2023慶應義塾大学医学部過去問
福田の数学〜慶應義塾大学2023年医学部第1問(1)〜図形の証明
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#式と証明#平面上のベクトル#図形と計量#三角比への応用(正弦・余弦・面積)#図形と方程式#恒等式・等式・不等式の証明#点と直線#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)三角形ABCにおいて辺BCを4:3に内分する点をDとするとき、等式
$\boxed{\ \ あ\ \ }$$AB^2$+$\boxed{\ \ い\ \ }$$AC^2$=$AD^2$+$\boxed{\ \ う\ \ }$$BD^2$
が成り立つ。
203慶應義塾大学医学部過去問
この動画を見る
$\Large\boxed{1}$ (1)三角形ABCにおいて辺BCを4:3に内分する点をDとするとき、等式
$\boxed{\ \ あ\ \ }$$AB^2$+$\boxed{\ \ い\ \ }$$AC^2$=$AD^2$+$\boxed{\ \ う\ \ }$$BD^2$
が成り立つ。
203慶應義塾大学医学部過去問
福田の数学〜慶應義塾大学2023年薬学部第1問(2)〜折れ線の最小と内接円の半径
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#三角関数#点と直線#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)aは正の定数とする。原点をOとするxy平面上に直線l:y=$\frac{2}{3}$xと2点A(0,a), B(17,20)がある。直線l上にとった動点Pと2点A,Bそれぞれを線分で結び、2つの線分の長さの和AP+BPが最小となったとき、$\angle APO$=45°であった。AP+BPが最小であるとき、直線BPを表す方程式はy=$\boxed{\ \ ウ\ \ }$であり、三角形ABPの内接円の半径は$\boxed{\ \ エ\ \ }$である。
2023慶應義塾大学薬学部過去問
この動画を見る
$\Large\boxed{1}$ (2)aは正の定数とする。原点をOとするxy平面上に直線l:y=$\frac{2}{3}$xと2点A(0,a), B(17,20)がある。直線l上にとった動点Pと2点A,Bそれぞれを線分で結び、2つの線分の長さの和AP+BPが最小となったとき、$\angle APO$=45°であった。AP+BPが最小であるとき、直線BPを表す方程式はy=$\boxed{\ \ ウ\ \ }$であり、三角形ABPの内接円の半径は$\boxed{\ \ エ\ \ }$である。
2023慶應義塾大学薬学部過去問
福田の数学〜北海道大学2023年理系第5問〜中間値の定理と関数の増減PART1
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ a,bを$a^2$+$b^2$<1をみたす正の実数とする。また、座標平面上で原点を中心とする半径1の円をCとし、Cの内部にある2点A(a,0), B(0,b)を考える。
0<θ<$\frac{\pi}{2}$に対してC上の点P($\cos\theta$, $\sin\theta$)を考え、PにおけるCの接線に関してBと対称な点をDとおく。
(1)f(θ)=ab$\cos2\theta$+a$\sin\theta$-b$\cos\theta$とおく。方程式f(θ)=0の解が0<θ<$\frac{\pi}{2}$の範囲に少なくとも1つ存在することを示せ。
(2)Dの座標をa, $\theta$を用いて表せ。
(3)θが0<θ<$\frac{\pi}{2}$の範囲を動くとき、3点A,P,Dが同一直線上にあるようなθは少なくとも1つ存在することを示せ。また、このようなθはただ1つであることを示せ。
2023北海道大学理系過去問
この動画を見る
$\Large\boxed{5}$ a,bを$a^2$+$b^2$<1をみたす正の実数とする。また、座標平面上で原点を中心とする半径1の円をCとし、Cの内部にある2点A(a,0), B(0,b)を考える。
0<θ<$\frac{\pi}{2}$に対してC上の点P($\cos\theta$, $\sin\theta$)を考え、PにおけるCの接線に関してBと対称な点をDとおく。
(1)f(θ)=ab$\cos2\theta$+a$\sin\theta$-b$\cos\theta$とおく。方程式f(θ)=0の解が0<θ<$\frac{\pi}{2}$の範囲に少なくとも1つ存在することを示せ。
(2)Dの座標をa, $\theta$を用いて表せ。
(3)θが0<θ<$\frac{\pi}{2}$の範囲を動くとき、3点A,P,Dが同一直線上にあるようなθは少なくとも1つ存在することを示せ。また、このようなθはただ1つであることを示せ。
2023北海道大学理系過去問
福田の数学〜東京大学2023年文系第2問〜定積分で表された関数と最大最小
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 座標平面上の放物線y=3$x^2$-4xをCとおき、直線y=2xをlとおく。実数tに対し、C上の点P(t, $3t^2-4t$)とlの距離をf(t)とする。
(1)-1≦a≦2の範囲の実数aに対し、定積分
g(a)=$\displaystyle\int_{-1}^af(t)dt$
を求めよ。
(2)aが0≦a≦2の範囲を動くとき、g(a)-f(a)の最大値および最小値を求めよ。
2023東京大学文系過去問
この動画を見る
$\Large\boxed{2}$ 座標平面上の放物線y=3$x^2$-4xをCとおき、直線y=2xをlとおく。実数tに対し、C上の点P(t, $3t^2-4t$)とlの距離をf(t)とする。
(1)-1≦a≦2の範囲の実数aに対し、定積分
g(a)=$\displaystyle\int_{-1}^af(t)dt$
を求めよ。
(2)aが0≦a≦2の範囲を動くとき、g(a)-f(a)の最大値および最小値を求めよ。
2023東京大学文系過去問
福田の数学〜東京工業大学2023年理系第5問(PART1)〜4直線に接する球面の決定
単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#点と直線#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ xyz空間の4点A(1,0,0), B(1,1,1), C(-1,1,-1), D(-1,0,0)を考える。
(1)2直線AB,BCから等距離にある点全体のなす図形を求めよ。
(2)4直線AB, BC, CD, DAに共に接する球面の中心と半径の組を全て求めよ。
2023東京工業大学理系過去問
この動画を見る
$\Large\boxed{5}$ xyz空間の4点A(1,0,0), B(1,1,1), C(-1,1,-1), D(-1,0,0)を考える。
(1)2直線AB,BCから等距離にある点全体のなす図形を求めよ。
(2)4直線AB, BC, CD, DAに共に接する球面の中心と半径の組を全て求めよ。
2023東京工業大学理系過去問
福田の1.5倍速演習〜合格する重要問題083〜東北大学2018年度理系第1問〜直線の通過範囲
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ xy平面上における2つの放物線C:y=$(x-a)^2+b$, D:y=$-x^2$を考える。
(1)CとDが異なる2点で交わり、その2交点のx座標の差が1となるように実数a,bが動くとき、Cの頂点(a, b)の軌跡を図示せよ。
(2)実数a, bが(1)の条件を満たしながら動くとき、CとDの2交点を結ぶ直線が通過する範囲を定め、図示せよ。
2018東北大学理系過去問
この動画を見る
$\Large\boxed{1}$ xy平面上における2つの放物線C:y=$(x-a)^2+b$, D:y=$-x^2$を考える。
(1)CとDが異なる2点で交わり、その2交点のx座標の差が1となるように実数a,bが動くとき、Cの頂点(a, b)の軌跡を図示せよ。
(2)実数a, bが(1)の条件を満たしながら動くとき、CとDの2交点を結ぶ直線が通過する範囲を定め、図示せよ。
2018東北大学理系過去問
福田の1.5倍速演習〜合格する重要問題097〜早稲田大学2020年度教育学部第4問〜曲線の通過範囲の面積
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標平面上で、定数k>0に対し、曲線y=$\frac{k}{\sqrt{1+x^2}}$の0≦x≦1の部分を$C_k$とする。
(1)曲線$C_k$上の点と原点との距離の最大値$M(k)$を求めよ。
(2)原点を中心に曲線$C_k$を1回転させるとき、$C_k$が通る部分の面積$S(k)$を求めよ。
2020早稲田大学教育学部過去問
この動画を見る
$\Large\boxed{4}$ 座標平面上で、定数k>0に対し、曲線y=$\frac{k}{\sqrt{1+x^2}}$の0≦x≦1の部分を$C_k$とする。
(1)曲線$C_k$上の点と原点との距離の最大値$M(k)$を求めよ。
(2)原点を中心に曲線$C_k$を1回転させるとき、$C_k$が通る部分の面積$S(k)$を求めよ。
2020早稲田大学教育学部過去問
福田の1.5倍速演習〜合格する重要問題049〜早稲田大学2019年度商学部第2問〜折れ線の長さの最小値問題
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#微分法と積分法#点と直線#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 座標平面上において、放物線\ y=x^2上の点をP、円(x-3)^2+(y-1)^2=1\ 上の\\
点をQ、直線\ y=x-4上の点をRとする。次の設問に答えよ。\\
\\
(1)QR の最小値を求めよ。\\
(2)PR+QR の最小値を求めよ。
\end{eqnarray}
2019早稲田大学商学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} 座標平面上において、放物線\ y=x^2上の点をP、円(x-3)^2+(y-1)^2=1\ 上の\\
点をQ、直線\ y=x-4上の点をRとする。次の設問に答えよ。\\
\\
(1)QR の最小値を求めよ。\\
(2)PR+QR の最小値を求めよ。
\end{eqnarray}
2019早稲田大学商学部過去問
放物線と直線
単元:
#数学(中学生)#数Ⅱ#図形と方程式#点と直線#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{a}{b}=?$
*図は動画内参照
ラ・サール高等学校
この動画を見る
$\frac{a}{b}=?$
*図は動画内参照
ラ・サール高等学校
福田の数学〜上智大学2022年TEAP文系型第1問(3)〜サイコロの目による円と直線の位置関係の確率
単元:
#数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを投げる試行を2回繰り返し、\hspace{116pt}\\
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線\hspace{60pt}\\
l:\frac{x}{a}+\frac{y}{b}=1\hspace{176pt}\\
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、\hspace{49pt}\\
三角形OPQの周および内部をD、三角形OPQの面積をSとする。\hspace{45pt}\\
\\
(3)円(x-3)^2+(y-3)^2=5とlが共有点を持たない確率は\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}である。\hspace{6pt}
\end{eqnarray}
2022上智大学文系過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを投げる試行を2回繰り返し、\hspace{116pt}\\
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線\hspace{60pt}\\
l:\frac{x}{a}+\frac{y}{b}=1\hspace{176pt}\\
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、\hspace{49pt}\\
三角形OPQの周および内部をD、三角形OPQの面積をSとする。\hspace{45pt}\\
\\
(3)円(x-3)^2+(y-3)^2=5とlが共有点を持たない確率は\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}である。\hspace{6pt}
\end{eqnarray}
2022上智大学文系過去問
福田の数学〜早稲田大学2022年教育学部第3問〜円の外接円の半径と円周上の点と原点の距離の最大最小
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ O(0,0),\ A(0,1),\ B(p,q)を座標平面上の点とし、pは0でないとする。\hspace{50pt}\\
AとBを通る直線をlとおく。Oを中心としlに接する円の面積をD_1で表す。\hspace{40pt}\\
また、3点O,A,Bを通る円周で囲まれる円の面積をD_2とおく。次の問いに答えよ。\hspace{4pt}\\
(1)D_1をp,qを使って表せ。\hspace{220pt}\\
(2)点(2,2\sqrt3)を中心とする半径1の円周をCとする。点BがC上を動くときの\hspace{24pt}\\
D_1とD_2の積D_1D_2の最小値と最大値を求めよ。\hspace{130pt}
\end{eqnarray}
2022早稲田大学教育学部過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{3}}\ O(0,0),\ A(0,1),\ B(p,q)を座標平面上の点とし、pは0でないとする。\hspace{50pt}\\
AとBを通る直線をlとおく。Oを中心としlに接する円の面積をD_1で表す。\hspace{40pt}\\
また、3点O,A,Bを通る円周で囲まれる円の面積をD_2とおく。次の問いに答えよ。\hspace{4pt}\\
(1)D_1をp,qを使って表せ。\hspace{220pt}\\
(2)点(2,2\sqrt3)を中心とする半径1の円周をCとする。点BがC上を動くときの\hspace{24pt}\\
D_1とD_2の積D_1D_2の最小値と最大値を求めよ。\hspace{130pt}
\end{eqnarray}
2022早稲田大学教育学部過去問
よく出る問題!放物線と直線が接するということは?【数学 入試問題】【京都大学】
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
放物線$y=ax^2+bx+c$が3直線$y=x,y=2x-1,y=3x-3$のすべてと接するとき、$a,b,c$の値を求めよ。
この動画を見る
放物線$y=ax^2+bx+c$が3直線$y=x,y=2x-1,y=3x-3$のすべてと接するとき、$a,b,c$の値を求めよ。
対頂角が等しいのはなぜ? 気付けば一瞬
福田の数学〜東京医科歯科大学2022年理系第2問〜放物線に反射する直線の方程式と面積
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#微分法と積分法#点と直線#円と方程式#微分とその応用#積分とその応用#接線と法線・平均値の定理#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ xy平面上の放物線P:y^2=4x上に異なる2点A,Bをとり、A,Bそれぞれに\\
おいてPへの接線と直交する直線をn_A,\ n_Bとする。aを正の数として、点Aの座標\\
を(a,\ \sqrt{4a})とするとき、以下の各問いに答えよ。\\
(1)\ n_Aの方程式を求めよ。\\
(2)直線ABと直線y=\sqrt{4a}とがなす角の2等分線の一つが、n_Aに一致する\\
とき、直線ABの方程式をaを用いて表せ。\\
(3)(2)のとき、点Bを通る直線r_Bを考える。r_Bと直線ABとがなす角の\\
2等分線の一つが、n_Bに一致するとき、r_Bの方程式をaを用いて表せ。\\
(4)(3)のとき、直線ABと放物線Pで囲まれた図形の面積をS_1とし、Pと直線\\
y=\sqrt{4a}、直線x=-1および(3)のr_Bで囲まれた図形の面積をS_2とする。\\
aを変化させたとき、\frac{S_1}{S_2}の最大値を求めよ。
\end{eqnarray}
2022東京医科歯科大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}}\ xy平面上の放物線P:y^2=4x上に異なる2点A,Bをとり、A,Bそれぞれに\\
おいてPへの接線と直交する直線をn_A,\ n_Bとする。aを正の数として、点Aの座標\\
を(a,\ \sqrt{4a})とするとき、以下の各問いに答えよ。\\
(1)\ n_Aの方程式を求めよ。\\
(2)直線ABと直線y=\sqrt{4a}とがなす角の2等分線の一つが、n_Aに一致する\\
とき、直線ABの方程式をaを用いて表せ。\\
(3)(2)のとき、点Bを通る直線r_Bを考える。r_Bと直線ABとがなす角の\\
2等分線の一つが、n_Bに一致するとき、r_Bの方程式をaを用いて表せ。\\
(4)(3)のとき、直線ABと放物線Pで囲まれた図形の面積をS_1とし、Pと直線\\
y=\sqrt{4a}、直線x=-1および(3)のr_Bで囲まれた図形の面積をS_2とする。\\
aを変化させたとき、\frac{S_1}{S_2}の最大値を求めよ。
\end{eqnarray}
2022東京医科歯科大学理系過去問
福田の数学〜千葉大学2022年理系第3問〜折り返された放物線と直線の交点の個数と囲まれる面積の最小
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 次の問いに答えよ。\\
(1)aを実数とする。y=axのグラフとy=x|x-2|のグラフの交点の個数が\\
最大となるaの範囲を求めよ。\\
(2)0 \leqq a \leqq 2とする。S(a)をy=axのグラフとy=x|x-2|のグラフで\\
囲まれる図形の面積とする。S(a)をaの式で表せ。\\
(3)(2)で求めたS(a)を最小にするaの値を求めよ。
\end{eqnarray}
2022千葉大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ 次の問いに答えよ。\\
(1)aを実数とする。y=axのグラフとy=x|x-2|のグラフの交点の個数が\\
最大となるaの範囲を求めよ。\\
(2)0 \leqq a \leqq 2とする。S(a)をy=axのグラフとy=x|x-2|のグラフで\\
囲まれる図形の面積とする。S(a)をaの式で表せ。\\
(3)(2)で求めたS(a)を最小にするaの値を求めよ。
\end{eqnarray}
2022千葉大学理系過去問
福田の数学〜神戸大学2022年理系第4問〜双曲線が直線から切り取る弦の中点の軌跡
単元:
#数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#点と直線#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ aを正の実数とし、双曲線\frac{x^2}{4}-\frac{y^2}{4}=1と直線y=\sqrt ax+\sqrt aが異なる2点P,Q\\
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。\\
(1)aの取りうる値の範囲を求めよ。\\
(2)s,tの値をaを用いて表せ。\\
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。\\
(4)tの値をsを用いて表せ。
\end{eqnarray}
2022神戸大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}}\ aを正の実数とし、双曲線\frac{x^2}{4}-\frac{y^2}{4}=1と直線y=\sqrt ax+\sqrt aが異なる2点P,Q\\
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。\\
(1)aの取りうる値の範囲を求めよ。\\
(2)s,tの値をaを用いて表せ。\\
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。\\
(4)tの値をsを用いて表せ。
\end{eqnarray}
2022神戸大学理系過去問
【数学IIB】図形と方程式まとめ(内分外分、直線の方程式、円の方程式、平行移動)
単元:
#数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
中心(1,4)、半径3の円の方程式は?
この動画を見る
中心(1,4)、半径3の円の方程式は?
【良問】数IIの知識で解けます【山形大学】【数学 入試問題】
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#点と直線#円と方程式#加法定理とその応用#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$T=\dfrac{sin\theta cos\theta}{1+sin^2\theta}$とする。
$\theta$が$0<\theta<\dfrac{\pi}{2}$の範囲を動くとき、$T$の最大値を求めよ。
この動画を見る
$T=\dfrac{sin\theta cos\theta}{1+sin^2\theta}$とする。
$\theta$が$0<\theta<\dfrac{\pi}{2}$の範囲を動くとき、$T$の最大値を求めよ。
【数Ⅱ】2つの円の位置関係・交点を通る直線または円の方程式【知らないと解けない知識問題】
単元:
#数Ⅱ#図形と方程式#点と直線#円と方程式#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
$ 2円x^2+y^2-10=0,x^2+y^2+2x-2y-6=0が2点で交わることを示せ.$
この動画を見る
$ 2円x^2+y^2-10=0,x^2+y^2+2x-2y-6=0が2点で交わることを示せ.$
福田の数学〜東京慈恵会医科大学2022年医学部第4問〜複素数平面と図形
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上の曲線#複素数平面#方べきの定理と2つの円の関係#図形と方程式#点と直線#2次曲線#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 複素数平面上の点zが原点を中心とする半径1の円周上を動くとき、w=z+\frac{2}{z}\\
で表される点wの描く図形をCとする。Cで囲まれた部分の内部(ただし、\\
境界線は含まない)に定点\alphaをとり、\alphaを通る直線lがCと交わる2点を\beta_1,\beta_2とする。\\
このとき、次の問いに答えよ。ただしiは虚数単位とする。\\
(1)w=u+vi(u,vは実数)とするとき、uとvの間に成り立つ関係式を求めよ。\\
(2)点\alphaを固定したままlを動かすとき、積|\beta_1-\alpha|・|\beta_2-\alpha|が最大となる\\
ようなlはどのような直線のときか調べよ。
\end{eqnarray}
2022東京慈恵会医科大学医学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}}\ 複素数平面上の点zが原点を中心とする半径1の円周上を動くとき、w=z+\frac{2}{z}\\
で表される点wの描く図形をCとする。Cで囲まれた部分の内部(ただし、\\
境界線は含まない)に定点\alphaをとり、\alphaを通る直線lがCと交わる2点を\beta_1,\beta_2とする。\\
このとき、次の問いに答えよ。ただしiは虚数単位とする。\\
(1)w=u+vi(u,vは実数)とするとき、uとvの間に成り立つ関係式を求めよ。\\
(2)点\alphaを固定したままlを動かすとき、積|\beta_1-\alpha|・|\beta_2-\alpha|が最大となる\\
ようなlはどのような直線のときか調べよ。
\end{eqnarray}
2022東京慈恵会医科大学医学部過去問