【数Ⅰ】【図形と計量】三角比の相互関係式の使い方2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【図形と計量】三角比の相互関係式の使い方2 ※問題文は概要欄

問題文全文(内容文):
$\sin\theta-\cos\theta$を$\sin\theta$だけを用いた式で表せ。また,$\cos\theta$だけを用いた式で表せ。
チャプター:

0:00 オープニング
0:17 sinだけ
2:55 cosだけ

単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sin\theta-\cos\theta$を$\sin\theta$だけを用いた式で表せ。また,$\cos\theta$だけを用いた式で表せ。
投稿日:2024.11.20

<関連動画>

福田のおもしろ数学384〜整数部分と小数部分を含む連立方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[a]はaの整数部分、{a}はaの小数部分
連立方程式
x+[y]+{z}=2025.1… ①
[x]+{y}+z=2025.2… ②
{x}+y+[z]=2025.3… ③

を解いて下さい。
この動画を見る 

【中学から分かる!】正弦定理(2):三角比 特別講義(トッコー)~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\triangle ABC$において,$a \sin A=b \sin B=c \sin C$ならばどんな三角形か.
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、$a,b,c,d$は全て正の数であるとする。

${\Large\boxed{2}}\ \boxed{1}$を利用して、$n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$a_1,a_2,\cdot,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} $$\geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 

福田の数学〜明治大学2022年理工学部第1問(2)〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)座標平面上の曲線$x^2+2xy+2y^2=5$を$C$とする。
$(\textrm{a})$直線$2x+y=t$が曲線$C$と共有点をもつとき、実数$t$の取り得る値の範囲は
$\boxed{コ}\leqq t \leqq \boxed{サ}$である。
$(\textrm{b})$直線$2x+y=1$が曲線$C$と$x \geqq 0$の範囲で共有点を少なくとも1個もつとき、
実数$t$ の取り得る値の範囲は$-\frac{1}{2}\sqrt{\boxed{シス}} \leqq t \leqq \boxed{セ}$である。

2022明治大学理工学部過去問
この動画を見る 

19兵庫県教員採用試験(数学:1-3番 命題)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(3)
$x,y,k \in \mathbb{ R }$
$x^2+y^2 \leqq 1$が$2x+y \geqq k$の十分条件となるkの範囲
この動画を見る 
PAGE TOP