【数Ⅲ】【積分とその応用】面積12 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【積分とその応用】面積12 ※問題文は概要欄

問題文全文(内容文):
曲線xa+yb=1は、直線xa+yb=1x軸、y軸で囲まれた三角形を一定の面積の比に分割することを示せ。ただし、a>0,b>0とする。
チャプター:

0:00 オープニング
0:05 解説
2:58 エンディング

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線xa+yb=1は、直線xa+yb=1x軸、y軸で囲まれた三角形を一定の面積の比に分割することを示せ。ただし、a>0,b>0とする。
投稿日:2025.03.26

<関連動画>

大学入試問題#771「たぶん良問!」 島根大学後期(2023) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#島根大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
012x22x22x+1dx

出典:2023年島根大学後期 入試問題
この動画を見る 

【数Ⅲ】【積分とその応用】不定積分置換積分、部分積分3 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不定積分を求めよ。
(1) xx34+1 dx
(2) dxxx+1
(3) log|x21| dx
(4) exexex dx

次の不定積分を求めよ。
(1) tan4x dx
(2) dxsin2x
(3) 11sinx dx
(4) (sin3xcos3x) dx

次の不定積分を求めよ。
(1) excosx dx
(2) exsinx dx

次の不定積分を求めよ。
(1) sinxlog(cosx) dx
(2) xtan2x dx
(3) 11ex dx
この動画を見る 

福田の数学〜空間図形の通過範囲の面積と体積〜杏林大学2023年医学部第3問後編〜空間図形の通過範囲の面積と体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標空間において原点 O を中心とする半径 1 の円 C がxy平面上にあり、x> 0の領域において点 A ( 0 ,- 1 , 0 )から点 B ( 0 , 1,0 )まで移動する C 上の動点を P とする。
(1) 下記の 2 条件を満たす直角二等辺三角形 PQR を考える。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・点 R の z 座標は正であり、直線 PR はz軸に平行である。
点 P が点 A から点 B まで移動するとき、三角形 PQR の周および内部が通過してできる立体Vについて、以下の間いに答えよ。
(a) 点 P が点 A から点 B まで移動するとき、線分 PR が通過してできる曲面の展開図は、横軸に弧 AP の長さ、縦軸に線分 PR の長さをとったグラフを考えればよく、アで表される概形となり、その面積はイである。
線分 PQ の中点を M とし、点 M から直線 QR に引いた垂線と線分 QR との交点を H とする。点 H は線分 QR を 1 :ウに内分する点である。点 P の位置に依らず、線分の長さについて×(MH)2+(OM)2=1が成り立つ。点Pが点 A から点 B まで移動するとき、線分 MH が通過する領域の概形はオであり、面積はπである。
※ア、オの解答群は動画内参照
(b) 点 P が点 A から点 B まで移動するとき、線分 QR が通過してできる曲面上において、 2 点 A , B を結ぶ最も短い曲線はクが描く曲線である。
クの解答群①点 Q ②点 R ③設間( a )で考えた点 H ④線分 QR とyz平面との交点 ⑤線分 QR を 1 :2に内分する点 ⑥線分 QR を2: 1 に内分する点 ⑦三角形 PQR の重心から線分 QR に引いた垂線と線分 QR との交点
(c) 点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積はである。また△ PQR の面積は、線分 PQを直径とする円の面積のπ倍である。よって、立体Vの体積はである。
( 2 )z0 の領域において、yz平面上の点 T を頂点とし、 2 点 P , Q を通る放物線Lを考える。ただし、 Q , T は下記の 2 条件を満たす点とする。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・三角形 PQT はxz平面に平行であり、点 T の z 座標は線分 PQ の長さに等しい。点 P が(1,0,0)であるとき、放物線Lを表す式はy=0,z=x2+(ただし1x1)であり、この放物線と線分 PQ で囲まれる図形の面積はである。
点 P が点 A から点 B まで移動するとき、放物線 L と線分 PQ で囲まれる図形が通過してできる立体の体積はである。
点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積はπである。また△ PQR の面積は、線分 PQ を直径とする円の面積のπ倍である。よって、立体体積はV の体積はである。

2023杏林大学過去問
この動画を見る 

福田の数学〜空間図形の通過範囲の面積と体積〜杏林大学2023年医学部第3問後編〜空間図形の通過範囲の面積と体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
xy平面上の単位円Cx0に動点PAからBへ移動するとき、
P,Qを通り頂点Tの放物線Lと線分PQで囲まれた図形の
通過範囲の体積を求めよ。
ただしTM=PQとする。
この動画を見る 

【高校数学】毎日積分45日目~①まずは部分分数分解せよ~【難易度:★★★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
228x4+4dx
(1)部分分数分解せよ
この動画を見る 
PAGE TOP preload imagepreload image