【中学数学】相似な図形の面積比と体積比~分かりやすく~【中3数学】 - 質問解決D.B.(データベース)

【中学数学】相似な図形の面積比と体積比~分かりやすく~【中3数学】

単元: #数学(中学生)#中3数学#相似な図形
指導講師: 【楽しい授業動画】あきとんとん
投稿日:2024.10.05

<関連動画>

直角三角形の垂線の長さ(高校受験数学)

アイキャッチ画像
単元: #数学(中学生)#中3数学#相似な図形
指導講師: 数学を数楽に
問題文全文(内容文):
直角三角形の垂線の長さの求め方解説動画です
この動画を見る 

因数分解 東大寺学園

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$(a+1)^4-(4a^2+1)(a+1)^2+4a^2$を因数分解

東大寺学園高等学校
この動画を見る 

【#4】【因数分解100問】基礎から応用まで!(31)〜(40)【解説付き】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(31)$(x^2+5)(x+3)(x-3)$
(32)$(x^2+1)(x+1)(x-1)$
(33)$(a+2b)(a-2b)(2a+3b)(2a-3b)$
(34)$3b^2(3a+2bc)(3a-2bc)$
(35)$\dfrac{1}{4}(2a+b-c)(2a-b+c)$
(36)$(5x+3)(25x^2-15x+9)$
(37)$(2x-3y)(4x^2+6xy+9y^2)$
(38)$(x-2)(x+1)(x-3)(x+2)$
(39)$(x+1)(x+3)(x+2)^2$
(40)$(x-1)^2(x^2-2x-4)$
この動画を見る 

【重要な図形…!】図形:岐阜県~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#相似な図形#平面図形#高校入試過去問(数学)#岐阜県公立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\triangle ABD \backsim \triangle CBE であることを証明しなさい$
$点D : \angle ABCの二等分線と辺ACとの交点$
$点E : 線分BDの延長線上の点CD =CE$
この動画を見る 

【高校受験対策/数学】関数-58

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数58

Q.
右の図1のように、1辺が$5cm$の正方形$ABCD$と、$EG=15cm,\angle EGF=90°$ の直角二等辺三角形$EFG$がある。
辺$BC$と辺$FG$は直線$l$上にあり、頂点$C$と頂点$F$は重なっている。
いまこの状態から、直角二等辺三角形$EFG$を固定し、正方形$ABCD$を直線$l$に沿って、
矢印の向きに毎秒$1cm$の達さで、頂点$B$ が頂点$G$に重なるまで動かす。
正方形$ABCD$を動かし始めてから$x$秒後に、 正方形$ABCD$と直角二等辺三角形$EFG$が重なる部分の面積を$ycm^2$とする。
図2は動かし始めてから2秒後の位置を表しており、図中の斜線部分は、重なった部分を表している。
このとき、次の各問に答えなさい。
ただし、正方形$ABCD$と直角二等辺三角形$EFG$と直線$l$は同じ平面上にあるものとし、$x=0$のとき$y=0$とする。

①$x=3$のときの$y$の値を求めよ。
②$y$の値が最大となるのは、正方形$ABCD$を動かし始めて何秒後から何秒後 までの間か。
このときの$x$の値の範囲を、不等号を使って表せ。
③$y=8$となる$x$の値をすべて求めよ。
この動画を見る 
PAGE TOP