問題文全文(内容文):
問題1
次の条件を満たす放物線の方程式を求めよ。
$(1)$ 3点 $(-4,0), \, (-2,0), \, (0,-4)$ を通る。
$(2)$ 点 $(2,0)$ で $x$ 軸に接し、点 $(-2,12)$ を通る。
問題2
$a, \, b, \, c$ の値を入力すると、関数 $y=ax^2+bx+c$ のグラフが表示されるコンピュータソフトがある。ある $a, \, b, \, c$ の値を入力すると、グラフは図のように表示された (図は動画参照)。
$(1)$ $a, \, b, \, c, \, b^2-4ac, \, a+b+c$ の符号をいえ。
$(2)$ この $a, \, b$ の値を変えずに、$c$ の値だけを変化させたとき、変わらないものを次の中からすべて選べ。また、変わらない理由を説明せよ。
① グラフと $x$ 軸の共有点の個数
② グラフの頂点の $x$ 座標の符号
③ グラフの頂点の $y$ 座標の符号
問題1
次の条件を満たす放物線の方程式を求めよ。
$(1)$ 3点 $(-4,0), \, (-2,0), \, (0,-4)$ を通る。
$(2)$ 点 $(2,0)$ で $x$ 軸に接し、点 $(-2,12)$ を通る。
問題2
$a, \, b, \, c$ の値を入力すると、関数 $y=ax^2+bx+c$ のグラフが表示されるコンピュータソフトがある。ある $a, \, b, \, c$ の値を入力すると、グラフは図のように表示された (図は動画参照)。
$(1)$ $a, \, b, \, c, \, b^2-4ac, \, a+b+c$ の符号をいえ。
$(2)$ この $a, \, b$ の値を変えずに、$c$ の値だけを変化させたとき、変わらないものを次の中からすべて選べ。また、変わらない理由を説明せよ。
① グラフと $x$ 軸の共有点の個数
② グラフの頂点の $x$ 座標の符号
③ グラフの頂点の $y$ 座標の符号
チャプター:
0:00 問題1(1)の解説
2:46 問題1(2)の解説
4:41 問題2(1)の解説
9:37 問題2(2)の解説
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
問題1
次の条件を満たす放物線の方程式を求めよ。
$(1)$ 3点 $(-4,0), \, (-2,0), \, (0,-4)$ を通る。
$(2)$ 点 $(2,0)$ で $x$ 軸に接し、点 $(-2,12)$ を通る。
問題2
$a, \, b, \, c$ の値を入力すると、関数 $y=ax^2+bx+c$ のグラフが表示されるコンピュータソフトがある。ある $a, \, b, \, c$ の値を入力すると、グラフは図のように表示された (図は動画参照)。
$(1)$ $a, \, b, \, c, \, b^2-4ac, \, a+b+c$ の符号をいえ。
$(2)$ この $a, \, b$ の値を変えずに、$c$ の値だけを変化させたとき、変わらないものを次の中からすべて選べ。また、変わらない理由を説明せよ。
① グラフと $x$ 軸の共有点の個数
② グラフの頂点の $x$ 座標の符号
③ グラフの頂点の $y$ 座標の符号
問題1
次の条件を満たす放物線の方程式を求めよ。
$(1)$ 3点 $(-4,0), \, (-2,0), \, (0,-4)$ を通る。
$(2)$ 点 $(2,0)$ で $x$ 軸に接し、点 $(-2,12)$ を通る。
問題2
$a, \, b, \, c$ の値を入力すると、関数 $y=ax^2+bx+c$ のグラフが表示されるコンピュータソフトがある。ある $a, \, b, \, c$ の値を入力すると、グラフは図のように表示された (図は動画参照)。
$(1)$ $a, \, b, \, c, \, b^2-4ac, \, a+b+c$ の符号をいえ。
$(2)$ この $a, \, b$ の値を変えずに、$c$ の値だけを変化させたとき、変わらないものを次の中からすべて選べ。また、変わらない理由を説明せよ。
① グラフと $x$ 軸の共有点の個数
② グラフの頂点の $x$ 座標の符号
③ グラフの頂点の $y$ 座標の符号
投稿日:2024.11.16





