問題文全文(内容文):
2
あるお店では、一個90円のチョコレートと一個80円のガムが売られています。次の問いに答えなさい。
(1) チョコレートとガムを合わせて10個買ったところ、代金は860円となります。それぞれ何個買ったのか求めなさい。
(2) チョコレートとガムを合わせて何個か買うと、代金は1200円となります。それぞれ何個買ったのか求めなさい。ただし、どちらとも少なくとも一個は買うものとします。
(3) チョコレートを10個買うごとにガムを一個無料でもらえるものとします。チョコレートとガムを何個か買ったとき、無料でもらえるガムも含めて30個になり、代金は2500円となりました。チョコレートを何個かったか、考えられる個数をすべて求めなさい。
3
1以上の整数Xを¥の約数の個数を《X》と表します。例えば、6の約数は、1,2,3,6の4個なので、《6》=4と表します。次の問いに答えなさい。
(1)《2024》を求めなさい。
(2) 《A》=5となるAのうち、100に最も近い数を求めなさい。
(3) BとCは1以上50未満の整数とします。《B》+《C》+《2024》=20を満たすBとCの組み合わせは全部で何通りありますか。
2
あるお店では、一個90円のチョコレートと一個80円のガムが売られています。次の問いに答えなさい。
(1) チョコレートとガムを合わせて10個買ったところ、代金は860円となります。それぞれ何個買ったのか求めなさい。
(2) チョコレートとガムを合わせて何個か買うと、代金は1200円となります。それぞれ何個買ったのか求めなさい。ただし、どちらとも少なくとも一個は買うものとします。
(3) チョコレートを10個買うごとにガムを一個無料でもらえるものとします。チョコレートとガムを何個か買ったとき、無料でもらえるガムも含めて30個になり、代金は2500円となりました。チョコレートを何個かったか、考えられる個数をすべて求めなさい。
3
1以上の整数Xを¥の約数の個数を《X》と表します。例えば、6の約数は、1,2,3,6の4個なので、《6》=4と表します。次の問いに答えなさい。
(1)《2024》を求めなさい。
(2) 《A》=5となるAのうち、100に最も近い数を求めなさい。
(3) BとCは1以上50未満の整数とします。《B》+《C》+《2024》=20を満たすBとCの組み合わせは全部で何通りありますか。
単元:
#算数(中学受験)#数の性質その他#約数・倍数を利用する問題#過去問解説(学校別)#和差算・植木算・分配算・倍数算・年齢算・相当算・つるかめ算#広尾学園中学
指導講師:
重吉
問題文全文(内容文):
2
あるお店では、一個90円のチョコレートと一個80円のガムが売られています。次の問いに答えなさい。
(1) チョコレートとガムを合わせて10個買ったところ、代金は860円となります。それぞれ何個買ったのか求めなさい。
(2) チョコレートとガムを合わせて何個か買うと、代金は1200円となります。それぞれ何個買ったのか求めなさい。ただし、どちらとも少なくとも一個は買うものとします。
(3) チョコレートを10個買うごとにガムを一個無料でもらえるものとします。チョコレートとガムを何個か買ったとき、無料でもらえるガムも含めて30個になり、代金は2500円となりました。チョコレートを何個かったか、考えられる個数をすべて求めなさい。
3
1以上の整数Xを¥の約数の個数を《X》と表します。例えば、6の約数は、1,2,3,6の4個なので、《6》=4と表します。次の問いに答えなさい。
(1)《2024》を求めなさい。
(2) 《A》=5となるAのうち、100に最も近い数を求めなさい。
(3) BとCは1以上50未満の整数とします。《B》+《C》+《2024》=20を満たすBとCの組み合わせは全部で何通りありますか。
2
あるお店では、一個90円のチョコレートと一個80円のガムが売られています。次の問いに答えなさい。
(1) チョコレートとガムを合わせて10個買ったところ、代金は860円となります。それぞれ何個買ったのか求めなさい。
(2) チョコレートとガムを合わせて何個か買うと、代金は1200円となります。それぞれ何個買ったのか求めなさい。ただし、どちらとも少なくとも一個は買うものとします。
(3) チョコレートを10個買うごとにガムを一個無料でもらえるものとします。チョコレートとガムを何個か買ったとき、無料でもらえるガムも含めて30個になり、代金は2500円となりました。チョコレートを何個かったか、考えられる個数をすべて求めなさい。
3
1以上の整数Xを¥の約数の個数を《X》と表します。例えば、6の約数は、1,2,3,6の4個なので、《6》=4と表します。次の問いに答えなさい。
(1)《2024》を求めなさい。
(2) 《A》=5となるAのうち、100に最も近い数を求めなさい。
(3) BとCは1以上50未満の整数とします。《B》+《C》+《2024》=20を満たすBとCの組み合わせは全部で何通りありますか。
投稿日:2024.10.28





