【数C】【平面上のベクトル】ベクトル方程式2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【平面上のベクトル】ベクトル方程式2 ※問題文は概要欄

問題文全文(内容文):
O(0,0), A(2,0), B(1,2)に対して、
点Pが次の条件を満たしながら動くとき、
点Pの存在範囲を図示せよ。

(1) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}$, $0≦s≦1$, $1≦t≦3$
(2) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}$, $1≦s+t≦3$
(3) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}$, $0≦2s+3t≦6$, $s≧0$, $t≧0$
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
O(0,0), A(2,0), B(1,2)に対して、
点Pが次の条件を満たしながら動くとき、
点Pの存在範囲を図示せよ。

(1) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}$, $0≦s≦1$, $1≦t≦3$
(2) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}$, $1≦s+t≦3$
(3) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}$, $0≦2s+3t≦6$, $s≧0$, $t≧0$
投稿日:2025.05.19

<関連動画>

【高校数学】 数B-7 ベクトルの分解

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎正六角形ABCDEFにおいて、$\overrightarrow{ AB }=\overrightarrow{ a },\overrightarrow{ BC }=\overrightarrow{ b }$とするとき、次のベクトルを$\overrightarrow{ a }=\overrightarrow{ b }$を用いて表そう。

①$\overrightarrow{ AF }$

②$\overrightarrow{ BE }$

③$\overrightarrow{ DA }$

④$\overrightarrow{ DF }$

※図は動画内参照
この動画を見る 

落とせないベクトル!京大でもびびる必要なし!【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形ABCと点Pに対して、次の二つの条件は同値であることを証明せよ。
(i) 点Pは三角形ABCの内部(周は除く)にある
(ii)正の数a,b,cがあって、aPA+bPB+cPC=0が成り立つ。
この動画を見る 

福田の数学〜空間における三角形の外心はどうやって求める〜杏林大学2023年医学部第2問前編〜空間ベクトルと三角形の外心

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、
$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。

2023杏林大学過去問
この動画を見る 

福田の数学〜回転の概念を使って考えるよ〜北里大学2023年医学部第3問〜ベクトルの漸化式と点列

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#数列#ベクトルと平面図形、ベクトル方程式#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
座標平面上に 3 点 $A_{0} ( 0 , 0 ), B_{0} ( 2 , 0 ), C_{0}( 1 ,\sqrt{ 3 })$があり、線分$A_{0}B_{0},B_{0}C_{0},C_{0}A_{0}$をそれぞれ 2 : 1 に内分する点 $A_{1} ,B_{1} ,C_{1}$をとる。以下同様にして、正の整数nに対し、線分$A_{n}B_{n},B_{n}C_{n},C_{n}A_{n}$をそれぞれ 2 : 1 に内分する点$A_{n+1},B_{n+1},C_{n+1}$をとる。また、$\overrightarrow{ P_{n} }=\overrightarrow{ B_{n-1}B_{n} }(n=1,2,3,・・・)$とおく。
(1)$\overrightarrow{ p_{1} },\overrightarrow{ p_{2} }$をそれぞれ成分表示せよ。
(2)$\overrightarrow{ p_{n+2} }を\overrightarrow{ p_{n} }$を用いて表せ。
(3)$\displaystyle \sum_{k=1}^n \overrightarrow{ p_{2k-1}}$を$\overrightarrow{ p-1}$を用いて表せ。
(4)点B_{2n}の座標を求めよ。

2023北里大学医過去問
この動画を見る 

福田の数学〜東京大学2018年理系第3問〜軌跡と領域そして極限

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#関数と極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
放物線$y=x^2$のうち$-1 \leqq x \leqq 1$を満たす部分をCとする。座標平面上の原点Oと点A(1,0)を考える。K>0を実数とする。点PがCの上を動き、天Qが線分OA上を動くとき$\overrightarrow{ OR }=\displaystyle \frac{1}{k}\overrightarrow{ OP }+k\overrightarrow{ OQ }$を満たす点Rが動く領域の面積をS(k)とする。
S(k)および$\displaystyle \lim_{ k \to +0 } S(k) ,\displaystyle \lim_{ k \to \infty }S(k)$を求めよ。

2018東京大学理系過去問
この動画を見る 
PAGE TOP