【数Ⅲ】積分法:定積分を含んだ関数の微分 - 質問解決D.B.(データベース)

【数Ⅲ】積分法:定積分を含んだ関数の微分

問題文全文(内容文):
次の関数をxについて微分せよ。
(1)$F(x)=\displaystyle \int_{e}^{t}\sin t dt$
(2)$F(x)=\displaystyle \int_(x+t)e^t dt$
(出典 4S数学Ⅲより)
学校の問題集にも載っている問題の解説です。
定期テストなどの対策で活用してみてくださいね。
チャプター:

00:00 問題の紹介
00:22 (1)の解説
03:06 (2)の解説

単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学Ⅲ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数をxについて微分せよ。
(1)$F(x)=\displaystyle \int_{e}^{t}\sin t dt$
(2)$F(x)=\displaystyle \int_(x+t)e^t dt$
(出典 4S数学Ⅲより)
学校の問題集にも載っている問題の解説です。
定期テストなどの対策で活用してみてくださいね。
投稿日:2023.01.11

<関連動画>

【高校数学】毎日積分75日目~47都道府県制覇への道~【⑱兵庫】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【神戸大学 2023】
媒介変数表示
$\displaystyle x=sint, y=cos(t-\frac{π}{6})sint (0≦t≦π)$
で表される曲線を$C$とする。以下の問に答えよ。
(1) $\displaystyle \frac{dx}{dt}=0$ または $\displaystyle \frac{dy}{dt}=0$となる$t$の値を求めよ。
(2) $C$の概形を$xy$平面上に描け。
(3) $C$の$y≦0$の部分と$x$軸で囲まれた図形の面積を求めよ。
この動画を見る 

【積分】2023年京大数学!絶対に落としてはいけない問題です【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
定積分 $\displaystyle \int_{1}^{4}\sqrt{x}\log(x^{2})dx$の値を求めよ。
この動画を見る 

#福島大学2024#定積分_31#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{24}} \sin x\cos x\cos 2x dx$

出典:2024年福島大学
この動画を見る 

【高校数学】毎日積分74日目~47都道府県制覇への道~【九州~四国・中国地方総集編】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
九州~四国・中国地方総集編
テーマ別に並べています!
この動画を見る 

福田の数学〜上智大学2022年理工学部第2問〜三角比と通過領域の体積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ tを実数とする。次の条件(★)を満たす\triangle ABCを考える。\hspace{100pt}\\
(★)AC=t,\ BC=1を満たし、\angle BACの2等分線と辺BCの交点をDとおくと、\\
\cos\angle DAC=\frac{\sqrt3}{3}である。\hspace{197pt}\\
(1)\cos\angle DAC=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}である。\\
\\
(2)tの取りうる範囲をt_1\lt t \lt t_2とするとき、t_1=\boxed{\ \ あ\ \ },t_2=\boxed{\ \ い\ \ }である。\\
\\
\boxed{\ \ あ\ \ },\ \boxed{\ \ い\ \ }の選択肢\\
(\textrm{a})0\ \ \ (\textrm{b})\frac{1}{3}\ \ \ (\textrm{c})\frac{1}{2}\ \ \ (\textrm{d})\frac{\sqrt3}{3}\ \ \ (\textrm{e})\frac{2}{3}\ \ \ (\textrm{f})1\ \ \ (\textrm{g})\frac{2\sqrt3}{2}\ \ \ (\textrm{h})\sqrt3\ \ \ (\textrm{i})2\ \ \ (\textrm{j})3\ \ \ \\
\\
(3)辺ABの長さをtの式で表すとAB=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}t+\sqrt{1+\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}t^2}\ \ \ である。\\
\\
(4)\triangle ABCの面積は\ t=\frac{\sqrt{\boxed{\ \ シ\ \ }}}{\boxed{\ \ ス\ \ }}で最大値\frac{\sqrt{\boxed{\ \ セ\ \ }}}{\boxed{\ \ ソ\ \ }}をとる。\\
\\
(5)t_1,t_2を(2)で定めた値とする。\\
t_1 \lt t \lt t_2の範囲で、xyz-座標空間内の平面z=t上に、条件(★)を満たす\\
\triangle ABCが、B(0,0,t),C(0,1,t)を満たし、Aのx座標が正であるように\\
おかれている。まgた、B_1(0,0,t_1),C_1(0,1,t_1),B_2(0,0,t_2),C_2(0,1,t_2)と\\
おく。\\
\triangle ABCをt_1 \lt t \lt t_2の範囲で動かしたときに通過してできる図形に線分B_1C_1、\\
線分B_2C_2を付け加えた立体の体積は\frac{\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}\ \ である。
\end{eqnarray}
この動画を見る 
PAGE TOP