福田のおもしろ数学339〜自然数の列から平方数を除いてできる列の第2024項の値 - 質問解決D.B.(データベース)

福田のおもしろ数学339〜自然数の列から平方数を除いてできる列の第2024項の値

問題文全文(内容文):
自然数の列$1,2,3,\cdots$から平方数を除いてできる列を$a_1,a_2,a_3,\cdots$とする。$a_{2024}$を求めて下さい。
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
自然数の列$1,2,3,\cdots$から平方数を除いてできる列を$a_1,a_2,a_3,\cdots$とする。$a_{2024}$を求めて下さい。
投稿日:2024.12.06

<関連動画>

慶應義塾大(商)数列の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k・2^{k+2}$

出典:2000年慶應義塾大学商学部 過去問
この動画を見る 

東京大2022理系

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
数列{$a_n$}を次のように定める。
$a_1=1$ , $a_{n+1}={a_n}^2+1(n=1,2,3\cdots)$
(1)正の整数nが3の倍数のとき$a_n$は5の倍数となることを示せ。
(2)$a_n$が$a_k$の倍数となる必要十分条件をk,nを用いて示せ。(k,n:正の整数)
(3)$a_{2022}$と$(a_{8091})^2$の最大公約数を求めよ。

2022東京大学理系
この動画を見る 

【高校数学】 数B-56 数列とは?

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$1,3,5,7,・・・$のように,数を一列に並べたものを数列といい,
数列を作っている各数を①という.
その中でも最初のものを②,最後のものを③という.

問題1
一般項$\{ an \}$が次の式で表される数列の$\large{a_1,a_4,a_7}$を求めよう.

④$2n-1$

⑤$-3n+2$

⑥$(-1)^n$

問題2
次の数列の一般項$\large{a_n}$を推測しよう.

⑦$3,6,9,12,・・・$

⑧$\dfrac{3}{2},\dfrac{9}{4},\dfrac{27}{6},\dfrac{81}{8},・・・$

⑨$-1,2,-3,4,・・・$
この動画を見る 

数学「大学入試良問集」【13−5 漸化式(割り算型)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$\{a_n\}$は
$a_1=9,a_{n+1}=4a_n+5^n(n=1,2,・・・)$をみたす。このとき、次の問いに答えよ。

(1)$b_n=a_n-5^n$とおく。$b_{n+1}$を$b_n$で表せ。
(2)数列$\{a_n\}$の一般項を求めよ。
この動画を見る 

福岡教育大 連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=2,b_1=1$
$a_{n+1}=a_n-8b_n$
$b_{n+1}=a_n+7b_n$

出典:1989年福岡教育大学 過去問
この動画を見る 
PAGE TOP