問題文全文(内容文):
2階微分方程式の一般解である.これを解け.
(1)$\dfrac{d^2x}{dt^2}+3\dfrac{dx}{dt}-4x=0$
(2)$\dfrac{d^2x}{dt^2}+10\dfrac{dx}{dt}+25x=0$
(3)$\dfrac{d^2x}{dt^2}-4\dfrac{dx}{dt}+6x=0$
2階微分方程式の一般解である.これを解け.
(1)$\dfrac{d^2x}{dt^2}+3\dfrac{dx}{dt}-4x=0$
(2)$\dfrac{d^2x}{dt^2}+10\dfrac{dx}{dt}+25x=0$
(3)$\dfrac{d^2x}{dt^2}-4\dfrac{dx}{dt}+6x=0$
単元:
#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
2階微分方程式の一般解である.これを解け.
(1)$\dfrac{d^2x}{dt^2}+3\dfrac{dx}{dt}-4x=0$
(2)$\dfrac{d^2x}{dt^2}+10\dfrac{dx}{dt}+25x=0$
(3)$\dfrac{d^2x}{dt^2}-4\dfrac{dx}{dt}+6x=0$
2階微分方程式の一般解である.これを解け.
(1)$\dfrac{d^2x}{dt^2}+3\dfrac{dx}{dt}-4x=0$
(2)$\dfrac{d^2x}{dt^2}+10\dfrac{dx}{dt}+25x=0$
(3)$\dfrac{d^2x}{dt^2}-4\dfrac{dx}{dt}+6x=0$
投稿日:2020.12.18





