問題文全文(内容文):
$\boxed{3}$
$0\leqq x\leqq 2\pi$である.
$y=3\sin^2x-2\sin x+\cos^2 x+3$の最大値,最小値と
そのときの$x$の値を求めよ.
$\boxed{3}$
$0\leqq x\leqq 2\pi$である.
$y=3\sin^2x-2\sin x+\cos^2 x+3$の最大値,最小値と
そのときの$x$の値を求めよ.
単元:
#数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{3}$
$0\leqq x\leqq 2\pi$である.
$y=3\sin^2x-2\sin x+\cos^2 x+3$の最大値,最小値と
そのときの$x$の値を求めよ.
$\boxed{3}$
$0\leqq x\leqq 2\pi$である.
$y=3\sin^2x-2\sin x+\cos^2 x+3$の最大値,最小値と
そのときの$x$の値を求めよ.
投稿日:2021.01.25





