重積分⑧-4【一般の変数変換】(高専数学 微積II,数検1級1次解析対応) - 質問解決D.B.(データベース)

重積分⑧-4【一般の変数変換】(高専数学 微積II,数検1級1次解析対応)

問題文全文(内容文):
これを解け.

$\iint_D \\ \dfrac{2x-y}{x+y}dx\ dy$
$D:1\leqq x+y \leqq 2,1\leqq 2x-y \leqq 3$
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.

$\iint_D \\ \dfrac{2x-y}{x+y}dx\ dy$
$D:1\leqq x+y \leqq 2,1\leqq 2x-y \leqq 3$
投稿日:2021.01.26

<関連動画>

#50数検1級1次 過去問 重積分の積分順序の変更

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2}dy\displaystyle \int_{y}^{2}x\sqrt{ x^3+1 }\ dx$を計算せよ。
この動画を見る 

微分方程式⑥【2階微分方程式の一般解】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\frac{d^2x}{dt^2}=-2\frac{dx}{dt}$
(1)$x=c_1e^{-2t}+c_2$ $(c_1,c_2:定数)$
は一般解であることを示せ
(2)t=0のときx=1,$\frac{dx}{dt}=2$をみたす解を求めよ
(3)t=0のときx=0
t=1のときx=1
をみたす解を求めよ。
この動画を見る 

練習問題33 数検1級1次 微分方程式

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\dfrac{dy}{dx}=(x+y)^2$
の一般解を求めよ.
この動画を見る 

重積分⑨-6【広義積分】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$D:0\leqq x\leqq 1,0\leqq y\leqq 1$とする.
$\iint_D \ \dfrac{1}{\sqrt{xy}}\ dx \ dy$

これを解け.
この動画を見る 

練習問題39 数研1級1次 教採対応 定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#不定積分・定積分#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\dfrac{x+3}{x^2-2x+2}dx$
を計算せよ.
この動画を見る 
PAGE TOP