重積分⑩-5 #151【曲面の面積】(高専数学 微積II,数検1級1次解析対応) - 質問解決D.B.(データベース)

重積分⑩-5 #151【曲面の面積】(高専数学 微積II,数検1級1次解析対応)

問題文全文(内容文):
$D:x^2+y^2\leqq 1$
曲面$Z=xy$の$D$上における面積$S$を求めよ.
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$D:x^2+y^2\leqq 1$
曲面$Z=xy$の$D$上における面積$S$を求めよ.
投稿日:2021.01.30

<関連動画>

#15 数検1級1次 過去問 3重積分

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$V:x^2+y^2+z^2\leqq 4$
$x^2+y^2\leqq 1,z\geqq 0$とする.

$\displaystyle \iiint_V\ z\ dx\ dy \ dz$を求めよ.
この動画を見る 

練習問題43 区分求積法 数検1級1次 教員採用試験

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#定積分#その他#数学検定#数学検定1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\sqrt[ n ]{ {}_{ 2n } P_n }$の極限値を求めよ。

$\displaystyle \int_{0}^{1}f(x)dx=\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\displaystyle \sum_{k=1}^n f(\displaystyle \frac{k}{n})$
この動画を見る 

重積分⑨-8【広義積分】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
これを解け.

(1)$\displaystyle \int_{0}^{\infty} \\ e^{-9x^2}\ dx$
(2)$\displaystyle \int_{-\infty}^{\infty} \\ e^{-4x^2}\ dx$
(3)$\displaystyle \int_{0}^{\infty} \\ e^{-x^2} dx=\dfrac{\sqrt x}{2}$
この動画を見る 

20年5月数学検定1級1次試験(三角関数)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$
$\tan(2Arc\tan\dfrac{1}{3}+Arc\tan\dfrac{1}{12})$
$Arc\tan a=\tan^{-1}a=t\Leftrightarrow t=\tan a$
$\tan(\tan^{-1}a)=a$
$\tan(\alpha+\beta)=\dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}$

20年5月数学検定1級1次試験(三角関数)過去問
この動画を見る 

重積分①(高専数学 微積II,数学検定1級解析)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
重積分(累次積分)
ex1 $∬_0 xy^2+y dx dy$
$ D : 0 \leqq x \leqq 1$ , $1 \leqq y \leqq 3$
この動画を見る 
PAGE TOP