問題文全文(内容文):
$\boxed{2}$ $f(x)=\dfrac{1}{x^2+x+1}$
(1)$y=f(x)$の概形をかけ.
(2)点$(a,0)$から,$y=f(x)$に異なる接線が2本引けるような
$a$の値の範囲を求めよ.
$\boxed{2}$ $f(x)=\dfrac{1}{x^2+x+1}$
(1)$y=f(x)$の概形をかけ.
(2)点$(a,0)$から,$y=f(x)$に異なる接線が2本引けるような
$a$の値の範囲を求めよ.
単元:
#微分とその応用#接線と法線・平均値の定理#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{2}$ $f(x)=\dfrac{1}{x^2+x+1}$
(1)$y=f(x)$の概形をかけ.
(2)点$(a,0)$から,$y=f(x)$に異なる接線が2本引けるような
$a$の値の範囲を求めよ.
$\boxed{2}$ $f(x)=\dfrac{1}{x^2+x+1}$
(1)$y=f(x)$の概形をかけ.
(2)点$(a,0)$から,$y=f(x)$に異なる接線が2本引けるような
$a$の値の範囲を求めよ.
投稿日:2021.02.07





