【数Ⅲ】【積分とその応用】点Pが原点Oを中心とする半径rの円の周上を等速円運動OPが毎秒π/6ラジアンだけ回転するとき,点Pの速さと加速度の大きさを求めよ。 - 質問解決D.B.(データベース)

【数Ⅲ】【積分とその応用】点Pが原点Oを中心とする半径rの円の周上を等速円運動OPが毎秒π/6ラジアンだけ回転するとき,点Pの速さと加速度の大きさを求めよ。

問題文全文(内容文):
点Pが,原点Oを中心とする半径rの円の周上を,等速円運動。OPが毎秒π/6ラジアンだけ回転するとき,点Pの速さと加速度の大きさを求めよ。ただし,Pは円周上の点(r,0)から出発するものとする。
チャプター:

0:00 オープニング
0:06 問題概要
0:21 等速円運動における媒介変数表示
1:05 tで1回微分
1:35 tで2回微分
2:38 速さの答え
3:07 加速度の答え

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Pが,原点Oを中心とする半径rの円の周上を,等速円運動。OPが毎秒π/6ラジアンだけ回転するとき,点Pの速さと加速度の大きさを求めよ。ただし,Pは円周上の点(r,0)から出発するものとする。
投稿日:2025.06.10

<関連動画>

大学入試問題#153 東京医科大学(2017) 微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科大学#東京医科大学
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$
$f(x)=\displaystyle \int_{1}^{x}\displaystyle \frac{x+4t}{\sqrt{ 3x^4+t^4 }}\ dt$において$f'(x)$を求めよ。

出典:2017年東京医科大学 入試問題
この動画を見る 

滋賀大 積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#学校別大学入試過去問解説(数学)#平面図形#角度と面積#数学(高校生)#数Ⅲ#滋賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'93滋賀大学過去問題
$y=\frac{1}{2}x^2$上に2点P,Q
線分PQは長さが2となるように動く、PQの中点のx座標をm
線分PQと放物線で囲まれる面積をmで表せ
この動画を見る 

大学入試問題#189 早稲田大学(2005) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{2}\displaystyle \frac{3}{1-x+x^2}\ dx$を計算せよ。

出典:2005年早稲田大学 入試問題
この動画を見る 

#前橋工科大学2021#定積分_14#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{13} \displaystyle \frac{dx}{\sqrt[ 3 ]{ (2x+1)^5 }}$

出典:2021年前橋工科大学
この動画を見る 

大学入試問題#464「誘導の力は偉大」 神戸大学(2000) #不定積分 #積分の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{1}{x^3(1-x)}$
(1)
$f(x)=\displaystyle \frac{a_1}{x}+\displaystyle \frac{a_2}{x^2}+\displaystyle \frac{a_3}{x^3}+\displaystyle \frac{b}{1-x}$
とおくとき、定数$a_1,a_2,a_3,b$を求めよ

(2)
$\displaystyle \int f(x) dx$

(3)
$\displaystyle \int \displaystyle \frac{dx}{x^P(1-x)}(P=1,2,3,・・・)$

出典:2000年神戸大学 入試問題
この動画を見る 
PAGE TOP