【数学】確率の求め方間違っていませんか?確率の前提の話 後編 - 質問解決D.B.(データベース)

【数学】確率の求め方間違っていませんか?確率の前提の話 後編

問題文全文(内容文):
確率の求め方で、間違った数え方していませんか?
確率の計算方法について解説します。

チャプター:

二つのサイコロを振った時、目の合計が3になる確率は?

単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率の求め方で、間違った数え方していませんか?
確率の計算方法について解説します。

投稿日:2023.02.08

<関連動画>

ロト7全パターン買ったらプラス?

アイキャッチ画像
単元: #数A#場合の数と確率#確率
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ロト7全パターン買ったらプラス?
この動画を見る 

福田の一夜漬け数学〜順列・組合せ(3)〜一列に並べる(後編)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 6個の文字A,A,A,B,B,Cがある。
(1)6個全部を一列に並べるとき、並び方は何通りあるか。
(2)6個全部を一列に並べるとき、ABの順で隣り合って
 並ぶものが1個だけである並べ方は何通りあるか。
(3)4文字を選んで一列に並べる方法は何通りあるか。
この動画を見る 

龍谷大 確率 三次関数

アイキャッチ画像
単元: #数A#場合の数と確率#確率#統計的な推測#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
白19個、赤1個から$n$個取り出す。
白が$n$個のとき$n^2$点
赤が含まれていたら0点
特典の期待値が最大となる$n$を求めよ

出典:2006年龍谷大学 過去問
この動画を見る 

福田の数学〜慶應義塾大学2024環境情報学部第5問〜リーグ戦の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1) 6つの大学による野球の総当たり戦を考える。総当たり戦では、どの2つの大学も1試合ずつ対戦し、試合ごとに引き分けなしで勝敗が決定する。いま、 各大学の実力は拮抗していて、勝敗の確率は$\frac{1}{2}$ずつとする。 このとき、全勝する大学が存在する確率は$\frac{\fbox{アイ}}{\fbox{ウエ}}$ 、全勝する大学と全敗する大学が両方存在する確率は$\frac{\fbox{オカキ}}{\fbox{クケコ}}$ 、どの大学も1試合は勝って1試合は負ける確率は$\frac{\fbox{サシス}}{\fbox{セソタ}}$である。

(2) 4つの大学による野球の総当たり戦を考える。総当たり戦では、どの2つの大学も1試合ずつ対戦し、試合ごとに引き分けなしで勝敗が決定する。いま、4つの大学のうちK大学の実力が他の3つの大学よりもまさっていて、K大学が他の大学に勝つ確率は$\frac{3}{4}$負ける確率は$\frac{1}{4}$とする。一方で、K大学以外の3つの大学の2 実力は拮抗していて、これらの大学同士の勝敗の確率は$\frac{1}{2}$ずつとする。このとき、全勝する大学が存在する確率はする確率は、$\frac{\fbox{チツ}}{\fbox{テト}}$、全勝する大学と全敗する大学が両方存在する確率は$\frac{\fbox{ナニ}}{\fbox{ヌネ}}$、どの大学も1試合は勝って1試合は負ける確率は$\frac{\fbox{ノハ}}{\fbox{ヒフ}}$である。
この動画を見る 

福田の数学〜反復試行の確率問題の練習に最適な問題〜慶應義塾大学2023年商学部第4問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
太郎は 15 個の球を、花子は幻個の球を持っている。による球のやり取りを 2 人の間で繰り返す。こから始めて、次の手順による球のやり取りを 2 人の間で繰り返す。
【1】 2 個のさいころを同時に投げる。
【 2 】① 2 個とも奇数の目が出たら、太郎が花子に 1 個の球を渡す。
   ② 2 個とも偶数の目が出たら、太郎が花子に 2 個の球を渡す。
   ③奇数の目と偶数の目 1 個ずつ出たら、花子が太郎に 3 個の球を渡す。
この手順【1】,【 2 】によるやり取りを、 7 回繰り返す。その結果、太郎と花子の持つ球の個数について、以下の間いに答えなさい。
( 1 )太郎と花子が同数の球を持っている確率は$\dfrac{\fbox{アイウ}}{\fbox{エオカキ}}$である。
( 2 )持っている球の数が、太郎と花子の 2 人とも最初と変わらない確率は$\dfrac{\fbox{クケコ}}{\fbox{サシスセ}}$である。
( 3 )太郎の持っている球の数が、花子の持っている球の数の半分である確率は$\dfrac{\fbox{ソタチ}}{\fbox{ツテトナ}}$である。

2023慶應義塾大学商学部過去問
この動画を見る 
PAGE TOP