高専数学 微積I #210(2) 曲線の長さ - 質問解決D.B.(データベース)

高専数学 微積I #210(2) 曲線の長さ

問題文全文(内容文):
$2\leqq x\leqq 3$
曲線$y=\log (x+\sqrt{x^2-1})$の長さ$\ell$を求めよ.
単元: #数Ⅱ#平面上の曲線#微分法と積分法#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$2\leqq x\leqq 3$
曲線$y=\log (x+\sqrt{x^2-1})$の長さ$\ell$を求めよ.
投稿日:2021.06.10

<関連動画>

#37 数検1級1次 過去問 重積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$D:1 \leqq x \leqq 2,x \leqq y \leqq x^2$
$\displaystyle \int \displaystyle \int \cos\displaystyle \frac{\pi y}{x}\ dxdy$を計算せよ。
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(1)〜2次方程式が整数を解にもつ条件

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#解と判別式・解と係数の関係#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)$a$と$b$を正の整数とし、$f(x)=ax^2-bx+4$とおく。2次方程式$f(x)=0$は
異なる2つの実数解をもつとする。
$(\textrm{a})$2次方程式$f(x)=0$の2つの解がともに整数であるとき
$\left\{
\begin{array}{1}
a=1  \\
b=\boxed{\ \ ア\ \ }
\end{array}
\right.$  
または 
$\left\{
\begin{array}{1}
a=\boxed{\ \ イ\ \ }\\
b=\boxed{\ \ ウ\ \ }
\end{array}
\right.\\$
である。

$(\textrm{b})b=7$とする。2次方程式$f(x)=0$の2つの解のうち一方が整数であるとき、
$a=\boxed{\ \ エ\ \ }$であり、$f(x)=0$の2つの解は
$x=\boxed{\ \ エ\ \ },\ \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}$
である。

2021明治大学理工学部過去問
この動画を見る 

【数Ⅱ】解と係数の関係と対称式 α²+β²の値【複数の方法で理解を深める】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ x^2+2x+5=0の解を\alpha,\betaとする.\alpha^2+\beta^2を求めよ.$
この動画を見る 

福田のおもしろ数学543〜2つの球面に引いた接線の長さの等しい点の軌跡

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$2$つの球面に引いた接線の長さの

等しい点の軌跡はどんな図形だろう?
    
この動画を見る 

京都大 4次方程式 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数係数の4次方程式
$x^4+ax^3+bx^2+cx+1=0$
重複も込めた4つの解は、整数2つ虚数2つである。
$a,b,c$の値を求めよ

出典:2002年京都大学 過去問
この動画を見る 
PAGE TOP