高専数学 微積II #51(1)(2) 合成関数の微分法 - 質問解決D.B.(データベース)

高専数学 微積II #51(1)(2) 合成関数の微分法

問題文全文(内容文):
$z=f(x,y)$:全微分可能である.
$\dfrac{dz}{dt}$を$t,\dfrac{\delta z}{\delta x},\dfrac{\delta z}{\delta y}$で表せ.

(1)$x-te^t,y=\log t$
(2)$x=\dfrac{t}{2t+1},y=\dfrac{t+1}{2t+1}$
単元: #数Ⅱ#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$z=f(x,y)$:全微分可能である.
$\dfrac{dz}{dt}$を$t,\dfrac{\delta z}{\delta x},\dfrac{\delta z}{\delta y}$で表せ.

(1)$x-te^t,y=\log t$
(2)$x=\dfrac{t}{2t+1},y=\dfrac{t+1}{2t+1}$
投稿日:2021.08.01

<関連動画>

15滋賀県教員採用試験(数学:5番 グラフと極限)

アイキャッチ画像
単元: #関数と極限#微分とその応用#数列の極限#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$
$y=\left(\dfrac{e}{x}\right)^{\log x}$のグラフをかけ.
この動画を見る 

福田のわかった数学〜高校3年生理系044〜極限(44)関数の連続性(1)

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$数学\textrm{III}$ $関数の連続性(1)$

$\displaystyle f(x) =\lim_{n \to \infty}\frac{x^{2n}-x^{2n-1}+ax^2+bx}{x^{2n}+1}$
が連続関数となるように$aとb$を定めよ。
この動画を見る 

福田のおもしろ数学233〜区分求積の公式の変形

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n}\displaystyle \sum_{k=1}^n f\left( \frac{k}{n} \right) = \int_0^1 f(x) dx$である。では$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n}\displaystyle \sum_{k=3}^{n+5} f\left( \frac{k}{n} \right)$はどうなる?
この動画を見る 

慶應義塾大(医)数列の極限

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.これを解け.
$a_n=\sqrt{n^2+n+5}$
$\displaystyle \lim_{n\to \infty}(a_n-[a_n])$

慶應(医)過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題069〜千葉大学2017年度理系第8問〜放物線上の3点を頂点とする三角形の面積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{8}}$ tを0以上の実数とし、Oを原点とする座標平面上の2点P($p, p^2$), Q($q, q^2$)で3つの条件
PQ=2, p<q, p+q=$\sqrt t$
を満たすものを考える。$\triangle OPQ$の面積をSとする。ただし、点Pまたは点Qが原点Oと一致する場合はS=0とする。
(1) pとqをそれぞれtを用いて表せ。
(2) Sをtを用いて表せ。
(3) S=1となるようなtの個数を求めよ。

2017千葉大学理系過去問
この動画を見る 
PAGE TOP