【数Ⅰ】2次関数:【難問】2変数関数の最大最小:序章 - 質問解決D.B.(データベース)

【数Ⅰ】2次関数:【難問】2変数関数の最大最小:序章

問題文全文(内容文):
$x^2-2xy+2y^2=2$ を満たすx,yについて
(1) xのとりうる値の最大値・最小値を求めよ。
チャプター:

0:00 導入
1:12 判別式を考える
1:50 xの係数が偶数である場合のショートカット方法
2:09 エンディング

単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x^2-2xy+2y^2=2$ を満たすx,yについて
(1) xのとりうる値の最大値・最小値を求めよ。
投稿日:2023.02.19

<関連動画>

2023高校入試解説16問目 3つの内接円 渋谷教育学園幕張

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle QPR=?$
*図は動画内参照

2023渋谷教育学園幕張高等学校
この動画を見る 

大学入試問題#596「√2のいとこ」 大阪教育大学(2014) #命題①

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: ますただ
問題文全文(内容文):
$\sqrt[ 3 ]{ 2 }$は無理数であることを示せ

出典:2015年大阪教育大学 入試問題
この動画を見る 

福田の数学〜三角比の基本の復習にどうぞ〜慶應義塾大学2023年経済学部第1問(1)〜三角形と外接円内接円の半径

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)$\triangle ABC$において
$sinA:sinB:sinC=3:7:8$
が成り立つとき、ある性の実数kを用いて
$a=\fbox{ア}k,b=\fbox{イ}k,c=\fbox{ウ}k$
と表すことができるので、この三角形の最も大きい角の余弦の値は$-\dfrac{\fbox{エ}}{\fbox{オ}}$であり、正弦の値は$-\fbox{カ}\sqrt{\fbox{キ}}$である。さらに$\triangle ABC$の面積が$54\sqrt{3}$であるとき、$k=\fbox{ク}$となるので、この三角形の外接円の半径は$\fbox{ケ}\sqrt{\fbox{コ}}$であり、内接円の半径は$\fbox{サ}\sqrt{\fbox{シ}}$である。

2023慶應義塾大学経済学部過去問
この動画を見る 

高校範囲の因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^4+4$を因数分解せよ。
この動画を見る 

慶應義塾高校 2次方程式解け

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(2021-x)(2022-x) =2023 - x$

慶應義塾高等学校
この動画を見る 
PAGE TOP