#電気通信大学2024#極限_72 - 質問解決D.B.(データベース)

#電気通信大学2024#極限_72

問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \displaystyle \sum_{k=1}^{n} \dfrac{n}{n^2+3k^2}$を解け.

電気通信大学過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \displaystyle \sum_{k=1}^{n} \dfrac{n}{n^2+3k^2}$を解け.

電気通信大学過去問題
投稿日:2024.11.05

<関連動画>

【数Ⅱ】指数関数のグラフと不等式【底が1より大きいか小さいかで全然違うグラフになる!】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
指数関数のグラフと不等式に関して解説していきます.
この動画を見る 

愚直にやるかすっきりやるか・整式の剰余

アイキャッチ画像
単元: #剰余の定理・因数定理・組み立て除法と高次方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
&&x^{2022}を(x^2+x+1)^2で割った余り

\end{eqnarray}
$
この動画を見る 

10三重県教員採用試験(数学:6-(2) 極限,平均値の定理)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#微分とその応用#接線と法線・平均値の定理#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}-(2)$
$\displaystyle \lim_{x\to 0}\dfrac{\sin (sin x)-\sin x}{\sin x-x}$の
極限値を求めよ.
この動画を見る 

早稲田大 指数 関数最小値 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=8^x+8^{-x}-4(4^x+4^{-x})$の最小値とそのときの$x$

出典:2009年早稲田大学 過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第1問(6)〜高次方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (6)$a,b$を実数、$i$を虚数単位とする。4次方程式
$x^4+(a+2)x^3-(2a+2)x^2+(b+1)x+a^3=0$
の1つの解が$1+i$であるとき、
$a=\boxed{\ \ コ\ \ }, b=\boxed{\ \ サ\ \ }$
である。また、他の解は$\boxed{\ \ シ\ \ }$である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 
PAGE TOP