問題文全文(内容文):
①$\triangle ABC$の$\angle A$の二等分線と
対辺$BC$との交点を$D$とすると,
$AB:AC=BD:DC$が成り立つことを証明しよう.
②平行四辺形$ABCD$において,辺$BC$の中点を$M$とし,
$AM$と$BD$の交点を$P$とする.
このとき,点$P$は$\triangle ABC$の重心であることを証明しよう.
図は動画内参照
①$\triangle ABC$の$\angle A$の二等分線と
対辺$BC$との交点を$D$とすると,
$AB:AC=BD:DC$が成り立つことを証明しよう.
②平行四辺形$ABCD$において,辺$BC$の中点を$M$とし,
$AM$と$BD$の交点を$P$とする.
このとき,点$P$は$\triangle ABC$の重心であることを証明しよう.
図は動画内参照
単元:
#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$\triangle ABC$の$\angle A$の二等分線と
対辺$BC$との交点を$D$とすると,
$AB:AC=BD:DC$が成り立つことを証明しよう.
②平行四辺形$ABCD$において,辺$BC$の中点を$M$とし,
$AM$と$BD$の交点を$P$とする.
このとき,点$P$は$\triangle ABC$の重心であることを証明しよう.
図は動画内参照
①$\triangle ABC$の$\angle A$の二等分線と
対辺$BC$との交点を$D$とすると,
$AB:AC=BD:DC$が成り立つことを証明しよう.
②平行四辺形$ABCD$において,辺$BC$の中点を$M$とし,
$AM$と$BD$の交点を$P$とする.
このとき,点$P$は$\triangle ABC$の重心であることを証明しよう.
図は動画内参照
投稿日:2016.04.14




