【中2 P.53】連立方程式の計算特訓② - 質問解決D.B.(データベース)

【中2 P.53】連立方程式の計算特訓②

問題文全文(内容文):
次の計算をしなさい.

2.
$\boxed{1}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=3(y-1)+4 \\
x+5y=9
\end{array}
\right.
\end{eqnarray}$

$\boxed{2}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-6y=16 \\
\dfrac{x}{4}+\dfrac{y}{3}=\dfrac{1}{6}
\end{array}
\right.
\end{eqnarray}$


$\boxed{3}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
0.4x-0.7y=1.1 \\
x+2y=14
\end{array}
\right.
\end{eqnarray}$

$\boxed{4}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{2x+y}{5}=2 \\
0.6x-0.2y=1
\end{array}
\right.
\end{eqnarray}$

$\boxed{5}$
$2x+5y=4y+7=4x+13y$
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の計算をしなさい.

2.
$\boxed{1}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=3(y-1)+4 \\
x+5y=9
\end{array}
\right.
\end{eqnarray}$

$\boxed{2}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-6y=16 \\
\dfrac{x}{4}+\dfrac{y}{3}=\dfrac{1}{6}
\end{array}
\right.
\end{eqnarray}$


$\boxed{3}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
0.4x-0.7y=1.1 \\
x+2y=14
\end{array}
\right.
\end{eqnarray}$

$\boxed{4}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{2x+y}{5}=2 \\
0.6x-0.2y=1
\end{array}
\right.
\end{eqnarray}$

$\boxed{5}$
$2x+5y=4y+7=4x+13y$
投稿日:2016.07.14

<関連動画>

【高校受験対策】数学-死守14

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#2次関数#円#表とグラフ#表とグラフ・集合#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$(2x - 1) - 5(x + 1)$ を計算しなさい.

②1次方程式$x-6=\dfrac{x}{4}$を計算しなさい.

③ $(- 6ab)^2 \div (- 9ab^2)$を計算しなさい.

④連立方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=10 \\
4x-y=-8
\end{array}
\right.
\end{eqnarray}$

⑤$(2\sqrt{10}- 5)(\sqrt{10} + 4)$を計算しなさい.

⑥2次方程式 $2x^2 - 3x - 1 = 0$を解きなさい.

⑦関数$y=2x^2$について,$x$の変域が$a\leqq x\leqq 1$のとき,
$y$の変域は$0\leqq y \leqq 18$である.
このとき,$a$の値を答えなさい.

⑧図1のように,$△ABC$の2辺$AB,AC$上にそれぞれ,
点$D,E$があり,$DE /\!/ BC$である.
$BC = 8cm,△ADE$と$△ABC$の面積の比が$9:16$のとき,
線分$DE$の長さを答えなさい.

⑨図2のように,円$O$の円周上に4つの点$A,B,C,D$があり,
線分$AC$は円$O$の直径である.
$\angle DAC=55°$であるとき,$\angle x$の大きさを答えなさい.

⑩右の表は,生徒37人の最近1か月間に読んだ本の冊数を調べ,
度数分布表にまとめたものである.
このとき,冊数の中央値と最頻値を,それぞれ答えなさい.
また,冊数の平均値を,小数第2位を四捨五入して,
小数第1位まで答えなさい.

図は動画内を参照
この動画を見る 

【中学数学】1次関数:関数決定マスターへの道 3発目! 傾き編

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす1次関数を求めよ。 傾きが2で、x=5のときy=7
この動画を見る 

【高校受験対策】数学-関数19

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で,直線$\ell$は関数$f =-\dfrac{1}{2}x+12$グラフで,
点$A$は直線$\ell$と$x$軸との交点である.
$x$軸上に点$B(9,0)$を,$y$軸上に点$C(0,6)$をそれぞれとる.
また,直線上に点$D(12,6)$をとると,
$△ABD$は$\angle ADB = 90°$の直角三角形になる.
これについて,次の各問いに答えなさい.

①点$A$の座標を求めなさい.

②$△ABD$の面積を求めなさい.

③直線$\ell$に点$P$をとる.
$BP+PC$の長さが最小になるときの点$P$の座標を求めなさい.

図は動画内参照
この動画を見る 

【学んだことを活かせ…!】連立方程式:明治大学付属中野高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#明治大学付属中野高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x,y $についての連立方程式 $ \begin{eqnarray}
\left\{
\begin{array}{l}
4x+3y=11 \\
x-ky=-\dfrac{1}{2}k
\end{array}
\right.
\end{eqnarray}$ の解が $\begin{eqnarray}
\left\{
\begin{array}{l}
x=p \\
y=q
\end{array}
\right.
\end{eqnarray}$ であり,
$ p+q=3 $が成り立つ.$ k $の値を求めなさい.

明治大学付属中野高等学校過去問
この動画を見る 

佐賀県立高校入試2021年「確率」

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)#佐賀県立高校
指導講師: 重吉
問題文全文(内容文):
佐賀県立高校入試2021年「確率」
-----------------
【ルール】
大小2つのさいころを同時に1回投げ、大きいさいころの出た目の数を十の位の数、小さいさいころの出た目の数を一の位の数としてけたの整数をつくる

このとき、下記の各問いに答えなさい。
ただし、(ルール)にある大小2つのさいころはともに、1から6までのどの目が出ることも同様に確からしいものとする。

(ア)【ルール】に従ってつくられる2けたの整数は、全部で何通りあるか求めなさい。

(イ)【ルール】に従ってつくられる2けたの整数が、偶数となる確率を求めなさい。

(ウ)【ルール】に従ってつくられる2けたの整数が、3の倍数となる確率を求めなさい。

(エ)まず【ルール】に従ってだけたの整数をつくり、次にその整数の十の位の数と一の位の数を入れかえた整数をつくる。
はじめにつくられる整数が、あとでつくられる整数より大きい数である確率を求めなさい。
この動画を見る 
PAGE TOP