問題文全文(内容文):
$\boxed{4}$点Oを中心とする半径$2$の球から点を中心とする半径$r(0 \lt r\lt 2)$の球をくり抜いてできた立体$V$がある。いま、点Oからおろした垂線の長さが$x(0 \lt x\lt 2)$である平面$P$で立体$V$を切り、2つの立体に分ける。2つの立体のうち、体積の小さい方を$V_{ 1 }$、大きい方を$V_{2}$とする。
(1)平面$P$による立体$V$の切り口の面積が$π(2-r)^2$であるとき、$x=\sqrt{ \boxed{ アイ }r^2+\boxed{ ウエ } }$である。
(2)$(0 \lt x\lt r)$のとき、$V_{1}$の体積は$(r^2+\boxed{ オカ})πx+\frac{\boxed{キク}}{\boxed{ケコ}}πr^3+\frac{\boxed{サシ}}{\boxed{スセ}}π$であり、$r \leqq x\lt2$のとき、$V_{1}$の体積は$\frac{\boxed{ソタ}}{\boxed{チツ}}πr^3+\boxed{テト}πx+\frac{\boxed{ナニ}}{\boxed{ヌネ}}π$である。
(3)$x=r$において、$V_{1}$の体積と$V_{2}$の体積の比が$1:3$になるとき、$r=\boxed{ノハ}+\sqrt{\boxed{ヒフ}}$である。また、$x=\frac{2}{3}r$において$V_{1}$の体積と$V_{2}$の体積の比が$1:3$になるとき、$r=\boxed{ヘホ}+\sqrt{\boxed{マミ}}$である。
$\boxed{4}$点Oを中心とする半径$2$の球から点を中心とする半径$r(0 \lt r\lt 2)$の球をくり抜いてできた立体$V$がある。いま、点Oからおろした垂線の長さが$x(0 \lt x\lt 2)$である平面$P$で立体$V$を切り、2つの立体に分ける。2つの立体のうち、体積の小さい方を$V_{ 1 }$、大きい方を$V_{2}$とする。
(1)平面$P$による立体$V$の切り口の面積が$π(2-r)^2$であるとき、$x=\sqrt{ \boxed{ アイ }r^2+\boxed{ ウエ } }$である。
(2)$(0 \lt x\lt r)$のとき、$V_{1}$の体積は$(r^2+\boxed{ オカ})πx+\frac{\boxed{キク}}{\boxed{ケコ}}πr^3+\frac{\boxed{サシ}}{\boxed{スセ}}π$であり、$r \leqq x\lt2$のとき、$V_{1}$の体積は$\frac{\boxed{ソタ}}{\boxed{チツ}}πr^3+\boxed{テト}πx+\frac{\boxed{ナニ}}{\boxed{ヌネ}}π$である。
(3)$x=r$において、$V_{1}$の体積と$V_{2}$の体積の比が$1:3$になるとき、$r=\boxed{ノハ}+\sqrt{\boxed{ヒフ}}$である。また、$x=\frac{2}{3}r$において$V_{1}$の体積と$V_{2}$の体積の比が$1:3$になるとき、$r=\boxed{ヘホ}+\sqrt{\boxed{マミ}}$である。
単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$点Oを中心とする半径$2$の球から点を中心とする半径$r(0 \lt r\lt 2)$の球をくり抜いてできた立体$V$がある。いま、点Oからおろした垂線の長さが$x(0 \lt x\lt 2)$である平面$P$で立体$V$を切り、2つの立体に分ける。2つの立体のうち、体積の小さい方を$V_{ 1 }$、大きい方を$V_{2}$とする。
(1)平面$P$による立体$V$の切り口の面積が$π(2-r)^2$であるとき、$x=\sqrt{ \boxed{ アイ }r^2+\boxed{ ウエ } }$である。
(2)$(0 \lt x\lt r)$のとき、$V_{1}$の体積は$(r^2+\boxed{ オカ})πx+\frac{\boxed{キク}}{\boxed{ケコ}}πr^3+\frac{\boxed{サシ}}{\boxed{スセ}}π$であり、$r \leqq x\lt2$のとき、$V_{1}$の体積は$\frac{\boxed{ソタ}}{\boxed{チツ}}πr^3+\boxed{テト}πx+\frac{\boxed{ナニ}}{\boxed{ヌネ}}π$である。
(3)$x=r$において、$V_{1}$の体積と$V_{2}$の体積の比が$1:3$になるとき、$r=\boxed{ノハ}+\sqrt{\boxed{ヒフ}}$である。また、$x=\frac{2}{3}r$において$V_{1}$の体積と$V_{2}$の体積の比が$1:3$になるとき、$r=\boxed{ヘホ}+\sqrt{\boxed{マミ}}$である。
$\boxed{4}$点Oを中心とする半径$2$の球から点を中心とする半径$r(0 \lt r\lt 2)$の球をくり抜いてできた立体$V$がある。いま、点Oからおろした垂線の長さが$x(0 \lt x\lt 2)$である平面$P$で立体$V$を切り、2つの立体に分ける。2つの立体のうち、体積の小さい方を$V_{ 1 }$、大きい方を$V_{2}$とする。
(1)平面$P$による立体$V$の切り口の面積が$π(2-r)^2$であるとき、$x=\sqrt{ \boxed{ アイ }r^2+\boxed{ ウエ } }$である。
(2)$(0 \lt x\lt r)$のとき、$V_{1}$の体積は$(r^2+\boxed{ オカ})πx+\frac{\boxed{キク}}{\boxed{ケコ}}πr^3+\frac{\boxed{サシ}}{\boxed{スセ}}π$であり、$r \leqq x\lt2$のとき、$V_{1}$の体積は$\frac{\boxed{ソタ}}{\boxed{チツ}}πr^3+\boxed{テト}πx+\frac{\boxed{ナニ}}{\boxed{ヌネ}}π$である。
(3)$x=r$において、$V_{1}$の体積と$V_{2}$の体積の比が$1:3$になるとき、$r=\boxed{ノハ}+\sqrt{\boxed{ヒフ}}$である。また、$x=\frac{2}{3}r$において$V_{1}$の体積と$V_{2}$の体積の比が$1:3$になるとき、$r=\boxed{ヘホ}+\sqrt{\boxed{マミ}}$である。
投稿日:2024.10.17





