【高校受験対策】数学-死守5 - 質問解決D.B.(データベース)

【高校受験対策】数学-死守5

問題文全文(内容文):
1.次の計算をしなさい.

①$1-7$

②$(-3)^2\times 2-5\times 3$

③$\dfrac{2}{3}-\dfrac{7}{10}\div \left(-\dfrac{7}{15}\right)$

④$2(x+3y)-(2x-y)$

⑤$\sqrt8+\sqrt6\times \sqrt3$

2,つぎの各問に答えなさい.

⑥$x^2+5x$を因数分解しなさい.

⑦連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-3y=-1 \\
x+6y=13
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑧2次方程式$3^2-5x+1=0$を解きなさい.

⑨$3a+b=10$を$a$について解きなさい.

⑩$15:(x-2)=3:2$であるとき,
$x$の値を求めなさい.
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の計算をしなさい.

①$1-7$

②$(-3)^2\times 2-5\times 3$

③$\dfrac{2}{3}-\dfrac{7}{10}\div \left(-\dfrac{7}{15}\right)$

④$2(x+3y)-(2x-y)$

⑤$\sqrt8+\sqrt6\times \sqrt3$

2,つぎの各問に答えなさい.

⑥$x^2+5x$を因数分解しなさい.

⑦連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-3y=-1 \\
x+6y=13
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑧2次方程式$3^2-5x+1=0$を解きなさい.

⑨$3a+b=10$を$a$について解きなさい.

⑩$15:(x-2)=3:2$であるとき,
$x$の値を求めなさい.
投稿日:2016.10.31

<関連動画>

【中学数学】式の計算:等式変形マスターへの道 5発目!『分数は消してから編』 m=(3a+2b)/5をa=の形にしましょう。

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$m=\dfrac{3a+2b}{5}$をa=の形にしましょう。
この動画を見る 

【高校受験対策】数学-死守6

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#比例・反比例#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の計算をしなさい.

①$5-7$

②$- 6 + 9 \div \dfrac{1}{4}$

③$3\sqrt2\times \sqrt8$

④$2(2a-3b)+(a-5b)$

2.次の問いに答えなさい.

⑤右の図1のように,線分$AB$を直径とする円があります.
円の中心$O$を定規とコンパスを使って作図しなさい.
ただし,点を示す記号$O$をかき入れ,作図に用いた線は消さないこと.

⑥右の図2のような反比例の関係$y =\dfrac{a}{x}$のグラフがあります.
点$O$は原点とします.$a$の値を求めなさい.

⑦連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x + y = 5 \\
y=4x-1
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑧二次方程式$x^2+5x+1=0$を解きなさい.

図は動画内を参照
この動画を見る 

福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART2)

アイキャッチ画像
単元: #式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。

チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。

2023京都大学理系過去問
この動画を見る 

【中学数学】等式の変形~誰でもできるようになります~ 1-5【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) $3x-5y=11(x)$

(2) $2ab+5b=3c(b)$

(3) $\displaystyle \frac{3ax-b}{5} =7(b)$

(4) $V=\displaystyle \frac{3}{4} tx^2(t)$
この動画を見る 

【高校受験対策/数学】死守75

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#平行と合同#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守75

①$-8+5$を計算しなさい。

②$1+3×-(\frac{2}{7})$を計算しなさい。

③$2(a+4b)+3(a-2b)$を計算しなさい。

④$\sqrt{27}-\frac{6}{\sqrt{3}}$を計算しなさい。

⑤$(x+1)^2+(x-4)(x+2)$を計算しなさい。

⑥次の式を因数分解しなさい。
$9x^2-4y^2$

⑦右の図のように、長方形$ABCD$を対角線$AC$を折り目として折り返し、
頂点$B$が移った点を$E$とする。
$\angle ACE=20°$のとき、$\angle x$の大きさを求めなさい。

⑧右の図のように、2点$A(2,6)$、$B(8,2)$がある。
次の文中の(ア)、(イ)にあてはまる数を求めなさい。

直線$y=ax$のグラフが、線分$AB$上の点を通るとき、$a$の値の範囲は、(ア) $ \leqq a\leqq$ (イ)である。
この動画を見る 
PAGE TOP