問題文全文(内容文):
⑦$z_1=2\left(\cos\dfrac{\pi}{3}+i\sin\dfrac{\pi}{3}\right),z_2=5\left(\cos\dfrac{2}{3}\pi+i\sin\dfrac{2}{3}\pi\right)$のとき,
$z_1 z_2$と,$\dfrac{z_1}{z_2}$を求めよう.
⑦$z_1=2\left(\cos\dfrac{\pi}{3}+i\sin\dfrac{\pi}{3}\right),z_2=5\left(\cos\dfrac{2}{3}\pi+i\sin\dfrac{2}{3}\pi\right)$のとき,
$z_1 z_2$と,$\dfrac{z_1}{z_2}$を求めよう.
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
⑦$z_1=2\left(\cos\dfrac{\pi}{3}+i\sin\dfrac{\pi}{3}\right),z_2=5\left(\cos\dfrac{2}{3}\pi+i\sin\dfrac{2}{3}\pi\right)$のとき,
$z_1 z_2$と,$\dfrac{z_1}{z_2}$を求めよう.
⑦$z_1=2\left(\cos\dfrac{\pi}{3}+i\sin\dfrac{\pi}{3}\right),z_2=5\left(\cos\dfrac{2}{3}\pi+i\sin\dfrac{2}{3}\pi\right)$のとき,
$z_1 z_2$と,$\dfrac{z_1}{z_2}$を求めよう.
投稿日:2017.03.22





