【テスト対策・中3】4章-1 - 質問解決D.B.(データベース)

【テスト対策・中3】4章-1

問題文全文(内容文):
①$y=ax^2$について、$ x = 2$のとき$y=-3$である。
このとき、$a$の値を求めなさい。

②$y$は$x$の2乗に比例し、$x=-6$のとき$y = 9$である。
$x = 12$のときの$y$の値を求めなさい。

③右図において、$m$は$y=ax^2$($a$は定数)のグラフで、
$A(3,-4)$は$m$上にある。
このとき、$a$の値を求めなさい。

図は動画内参照
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$y=ax^2$について、$ x = 2$のとき$y=-3$である。
このとき、$a$の値を求めなさい。

②$y$は$x$の2乗に比例し、$x=-6$のとき$y = 9$である。
$x = 12$のときの$y$の値を求めなさい。

③右図において、$m$は$y=ax^2$($a$は定数)のグラフで、
$A(3,-4)$は$m$上にある。
このとき、$a$の値を求めなさい。

図は動画内参照
投稿日:2017.07.04

<関連動画>

【テスト対策・中3】2章-2

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\sqrt{20}$と$\sqrt{18}+\sqrt2$はどちらが大きいか,
理由をあわせて説明しなさい.

②$\sqrt{17},2\sqrt3,\dfrac{6}{\sqrt2},\sqrt{(-4)^2}$を
小さい順に左から並べなさい.
この動画を見る 

【数学】中高一貫校問題集 幾何:三平方の定理:平面図形 内接円の半径2

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3辺の長さがAB=7cm,BC=8cm,CA=9cmの△ABCがあり、円Oは△ABCに内接している。
(1)Aから辺BCに引いた垂線の長さを求めなさい。
(2)円Oの半径を求めなさい。
この動画を見る 

【連立方程式最終問題⁈】連立方程式:慶応義塾高等学校(訂正版)~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#平方根#高校入試過去問(数学)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 慶応義塾高等学校
【連立方程式】

$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{5}{x-\sqrt{ 2 }} + \displaystyle \frac{2}{x+\sqrt{ 2 y}}= 1 \\
\displaystyle \frac{1}{x-\sqrt{ 2 }} - \displaystyle \frac{5}{x+\sqrt{ 2y }} = 2
\end{array}
\right.
\end{eqnarray}$
の解は、$x=$▭、$y=$▭である。
四角部分を求めよ。
この動画を見る 

square root : Shirotan's cute kawaii math show #数学 #高校入試 #京大数学 #小学生テスト

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
π<n<√50を満たす整数nをすべて求めよ。
この動画を見る 

【高校受験対策】数学-死守25

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#円#文章題#文章題その他#表とグラフ#表とグラフ・集合#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-4-8$を計算しなさい.

②$\dfrac{1}{3}-\dfrac{3}{7}$を計算しなさい.

③$\sqrt{50}-\sqrt{32}$を計算しなさい.

④2次方程式$x^ 2 - 5x + 2 = 0$を解きなさい.

⑤図1のように,四角形$ABCD$の3つの頂点における外角が
わかっているとき,$\angle x$の大きさを求めなさい.

⑥図2のような半径$6cm$の半球の表面積と体積を求めなさい.
ただし,円周率は$\pi$とする.

⑦右の表は,あるクラスの1日の家庭での学習時間を
度数分布表にまとめたものである.
この表から$\Box$にあてはまる数と最頻値(モード) を求めなさい.

⑧ある家庭では,昨年1月の電気代と水道代の1日当たりの合計額は530円だった.
その後,家族で節電・節水を心がけたため,今年1月の1日当たりの額は,
昨年1月と比較して電気代は15%,水道代は10%減り,
1日当たりの合計額は460円となった.
昨年1月の1日当たりの電気代と水道代はそれぞれ何円か,求めなさい.

図は動画内参照
この動画を見る 
PAGE TOP