福田の数学〜上智大学2024理工学部第1問(3)〜回路に電流が流れて電球が点灯する確率の最大 - 質問解決D.B.(データベース)

福田の数学〜上智大学2024理工学部第1問(3)〜回路に電流が流れて電球が点灯する確率の最大

問題文全文(内容文):
次の図で表される回路は、$\rm AP$間、$\rm AQ$間、$\rm PB$間、$\rm QB$間がつながっておらず、それぞれの区間を1本の導線でつなぐことができる。$\rm P$または$\rm Q$を経由して$\rm AB$間がつながり電流が流れると電球が点灯する。導線にはタイプαが2本、タイプβが2本ある。それぞれの導線に電流が流れる確率はタイプαが$\dfrac23$、タイプβが$\dfrac12$である。
(i) $\rm AP$間、$\rm PB$間を2本のタイプαの導線でそれぞれつなぐとき、$\rm L$が点灯する確率は?
(ii) $\rm AP$間、$\rm AQ$間、$\rm PB$間、$\rm QB$間でそれぞれつなぐすべてのパターンを考える。$\rm L$が点灯する確率が最も大きくなるときの確率は?
(iii) $\rm PQ$間を確実に電流が流れる別の導線でつなぎ、$\rm AP$間、$\rm AQ$間、$\rm PB$間、$\rm QB$間を4本の導線でそれぞれつなぐすべてのパターンを考える。$\rm L$が点灯する確率が最も大きくなるときの確率は?
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の図で表される回路は、$\rm AP$間、$\rm AQ$間、$\rm PB$間、$\rm QB$間がつながっておらず、それぞれの区間を1本の導線でつなぐことができる。$\rm P$または$\rm Q$を経由して$\rm AB$間がつながり電流が流れると電球が点灯する。導線にはタイプαが2本、タイプβが2本ある。それぞれの導線に電流が流れる確率はタイプαが$\dfrac23$、タイプβが$\dfrac12$である。
(i) $\rm AP$間、$\rm PB$間を2本のタイプαの導線でそれぞれつなぐとき、$\rm L$が点灯する確率は?
(ii) $\rm AP$間、$\rm AQ$間、$\rm PB$間、$\rm QB$間でそれぞれつなぐすべてのパターンを考える。$\rm L$が点灯する確率が最も大きくなるときの確率は?
(iii) $\rm PQ$間を確実に電流が流れる別の導線でつなぎ、$\rm AP$間、$\rm AQ$間、$\rm PB$間、$\rm QB$間を4本の導線でそれぞれつなぐすべてのパターンを考える。$\rm L$が点灯する確率が最も大きくなるときの確率は?
投稿日:2024.10.01

<関連動画>

福田の数学〜神戸大学2025文系第3問〜単位円周上の2点と確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#場合の数#三角関数#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$1$個のさいころを$2$回続けて投げるとき、

出た目の数を順に$a,b$とおく。

座標平面上の$2$点$A,B$を

$A\left(\cos \dfrac{a}{6}\pi,\sin\dfrac{a}{6}\pi\right),\quad B\left(\cos \dfrac{b+6}{6}\pi,\sin\dfrac{b+6}{6}\pi\right)$

とし、原点を$O$とする。

以下の問いに答えよ。

(1)$3$点$O,A,B$が一直線上にある確率を求めよ。

(2)$3$点$O,A,B$が一直線上になく、かつ

三角形$OAB$の面積が$\dfrac{1}{4}$以下である

確率を求めよ。

(3)$2$点$A,B$間の距離が$1$より

大きい確率を求めよ。

$2025$年神戸大学文系過去問題
この動画を見る 

【高校数学】 数A-31 条件付き確率③

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
3つの箱$a,b,c$があり,それぞれに赤玉と白玉が右の表のように入っている.
無作為に1箱選んで1個の玉を取り出すとき,次の確率を求めよう.

①取り出した玉が赤玉である確率

②取り出した玉が赤玉のときに,それが箱$C$から取り出された確率

図は動画内参照
この動画を見る 

福田のおもしろ数学107〜京都大学の有名問題〜車両の色塗り

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$n$両編成($n$≧2)に各車両に赤、青、黄の3色のいずれかを塗る。隣り合った車両の少なくとも一方が赤になるような塗り方は何通りあるか。
この動画を見る 

【高校数学】同じものを含む順列の例題~できた方がいい問題3題~1-11.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
8人の生徒を次のようにする方法は何通りあるか。
(a)4人,3人,1人の3組分ける
(b)4人,4人の2つの組A, Bに分ける
(c)4人,4人の2組に分ける
(d)4人,2人,2人の3組に分ける
(e)2人,2人,2人,2人の4組に分ける

-----------------

2⃣
次の数は何通りか。
(a)6個の数1,1,1,2,2,3を並べてできる6桁の整数
(b)7個の数0,1,1,1,2,2,3を並べてできる7桁の整数

-----------------

3⃣
YOKOHAMAの8文字を1列に並べる
(a)異なる並べ方は何通りあるか
(b)OとAが偶数番目にある並べ方は何通りあるか
(c)Y,K,H,Mがこの順にある並べ方は何通りあるか

この動画を見る 

場合の数  慶應義塾2021

アイキャッチ画像
単元: #数学(中学生)#数A#場合の数と確率#場合の数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1~20の自然数から異なる4つを選び、小さい順にa,b,c,dとする。
c=8のときa,b,dの選び方は何通り?

2021慶應義塾高等学校
この動画を見る 
PAGE TOP